Меню

Двухполосный усилитель мощности схема



СХЕМА САМОДЕЛЬНОЙ ДВУХПОЛОСНОЙ АС С УНЧ

Одним из вариантов заметного повышения качества воспроизведения музыкальных файлов является способ разделения сигнала на частотые составляющие (НЧ, СЧ, ВЧ) в предварительных маломощных каскадах и дальнейшее их усиление соответствующими узкополосными усилителями и динамическими системами. Такой вариант позволяет, например, избавиться от необходимости применения пассивных RLC-фильтров в акустических системах, которые вносят неизбежные затухания и искажения в сигнал уже на выходе его из усилительного тракта. Также, такой вариант даёт возможность применения раздельных акустических систем для низких частот (сабвуферы) и значительно менее требовательных к мощности небольших СЧ и ВЧ излучателей. Требования к характеристикам самих усилителей мощности тоже не одинаковы для НЧ, СЧ и ВЧ сигналов и предлагаемый вариант даёт возможность использовать такие усилители оптимальным образом. В этой статье будет приведён пример построения системы раздельного, двухполосного воспроизведения средней мощности. При её изготовлении ставилась задача максимально эффективного использования имеющихся ещё с советских времён малогабаритных широкополосных акустических систем «Radiotehnika S-30» и АС «PHILIPS FB-20PH». Конечно, с предлагаемым усилителем возможно применение и любых других систем, аналогичных по мощности и характеристикам.

Как известно всем, кто сталкивался в своё время с колонками S-30, качество воспроизведения звука этими АС было весьма посредственным, особенно в среднем диапазоне (СЧ-ВЧ) из за применения динамических головок с не очень высокими параметрами. Но использовать эти колонки в качестве «сабвуферов» для обычных жилых помещений вполне возможно. В то же время имеющиеся колонки от миникомплекса «PHILIPS»с номинальной мощностью по 20 Вт, довольно качественно воспроизводят как раз СЧ-ВЧ составляющие сигнала, но имеют ощутимый завал на частотах ниже 90 Гц. Поэтому и возник такой вариант использования этой акустики с максимально возможной отдачей.

Одним из важных плюсов в этом варианте, как уже говорилось выше, является то, что усилитель мощности для каждой полосы частот — отдельный и может быть подобран по мощности и характеристикам оптимальным образом. Исходя из номинальных мощностей применяемой акустики, было принято решение использовать в качестве УМЗЧ специализированные микросхемы-усилители мощности серии TDA (конечно, можно использовать МС других серий в соответствующем включении или, например, транзисторные схемы). Такие микросхемы мощностью до 45 ВТ на канал (содержат обычно 2, 4 канала) широко применяются в малогабаритной радиотехнике, например в автомагнитолах.

Предварительные каскады с фильтрами

Поскольку микросхемы усилителей мощности серии TDA, применённые в данном усилителе, имеют однополярное питание ( +8. 18 В), то и каскады предварительного усиления выбирались с однополярным питанием. При этом ставилась задача использовать схемы с минимальным количеством каскадов и активных элементов в них для снижения вносимых этими каскадами искажений в исходный сигнал. В качестве входного каскада с фильтром, выделяющим НЧ-составляющую сигнала, была применена схема на рис.1, опубликованная в своё время в одном из номеров журнала «Моделист-Конструктор», но с заменой транзисторов на современные аналоги и изменением частоты среза фильтра под вышеуказанную акустику.

Здесь транзистор Т1 работает как фазовращатель, напряжения в противофазе возникают на резисторах R3 и R4. Прямой сигнал снимается с эмиттера и подаётся на следующий каскад на транзисторе Т2. Он пропускает СЧ и ВЧ составляющие сигнала и задерживает низкие частоты, которые проходят на выход НЧ через каскад на Т3. Частота среза выбирается подбором конденсаторов С3 и С4, в данном случае она около 150 Гц. Частоту среза можно сдвинуть в сторону более высоких частот, уменьшая эти ёмкости. Например в исходной схеме, при ёмкостях С3=С4 = 330 пФ частота среза была указана равной 3 кГц. К сожалению, найти исходную схему с подробным описанием и расчётами мне не удалось, поэтому частота среза и эти ёмкости подбирались в готовой схеме опытным путём по наилучшему соотношению звучания НЧ и СЧ-ВЧ колонок. Крутизна среза фильтра около 12 дБ на октаву. Сигнал СЧ+ВЧ с выхода этого фильтра подаётся непосредственно на усилитель мощности средних-высоких частот, а низкочастотный сигнал на ещё один фильтр — инфранизких частот (сабсоник), который срезает частоты ниже 30 Гц (рис.2).

Это позволяет избавиться от соответствующих колебаний очень низких частот, которые практически не воспроизводятся применяемыми динамиками, тем не менее вызывают ненужные нам колебания их диффузоров с большой амплитудой, что приводит к большим перегрузкам и искажениям сигнала. Частота среза фильтра задаётся элементами С2, С3, С4, R4, R5, а режим работы транзистора Т1 подбором номинала резистора R3 (следует выставить на коллекторе этого транзистора примерно половину напряжения питания каскада, т. е. 4,5 V). На выходе фильтра включен переменный резистор (может быть от 10 до 100 кОм, это зависит от входного сопротивления включенного за ним усилителя мощности). С его помощью можно регулировать уровень усиления низких частот относительно СЧ-ВЧ для выравнивания суммарной частотной характеристики всей системы. Шунтирующий конденсатор C5 после переменного резистора нужен для дополнительного среза частот выше 1000 Гц, чтобы убрать возможные вч-шумы и наводки, а разделительный C6 мкФ можно не ставить, если на входе усилителя мощности такой конденсатор уже используется. Для снижения собственных шумов, схемы выбраны без использования оксидных электролитических конденсаторов в сигнальных цепях (за исключением входного конденсатора С1 первого фильтра, но и его можно заменить при желании на обычный, например, плёночный). Транзисторы в обоих фильтрах можно применить любые маломощные n-p-n структуры, но, желательно с высоким коэффициентом усиления и низким уровнем собственных шумов (2РС1815L, BC549C, BC550C, BC849C (smd) , BC850C (smd), BC109C, BC179C и др.)

Читайте также:  Мощность светового потока led

Оконечные усилители мощности

Для упрощения схемы и в целях уменьшения размеров готового устройства, в качестве оконечных усилителей были использованы микросхемы серии TDA, которые широко применяются в малогабаритной аудио аппаратуре, например, в автомагнитолах. Эти микросхемы имеют, как правило, достаточно приемлемые характеристики для бытовой аппаратуры вполне высокого качества. При этом они имеют встроенные схемы защиты от перегрузки, перегрева и коротких замыканий в нагрузке. Мощностные характеристики определялись исключительно мощностями имеющихся акустических систем. Так, для СЧ-ВЧ полосы была использована МС TDA1558Q в мостовом включении. Эта МС может включаться по схеме 4 канала по 11 Вт, либо по мостовой схеме 2х22 Вт). Для колонок мощностью 20 ватт была применена такая мостовая схема включения (рис.3)

Схема предельно простая и отдельного описания, явно, не требует. Неиспользуемые выводы МС — 4,9,15 — следует оставить свободными. Если отдельный выключатель MUTE / ST-BY использоваться не будет, контакт 14 МС следует соединить напрямую с плюсовым проводом питания. Электролитический конденсатор большой ёмкости (2200 mF) желательно ставить как можно ближе к выводам МС. От его ёмкости зависит не только качество сглаживания питающего напряжения, но и перегрузочная способность усилителя. Конденсатор 0,1 mF в цепи питания ставится для фильтрация возможной высокочастотной составляющей. Рабочее напряжение всех элементов должно быть не ниже напряжения питания (+U).

Для низкочастотной полосы была использована одна из имеющихся в наличии оригинальных МС TDA7575. Эти микросхемы действительно «оригинальны» и встречаются, как правило, в аппаратах более высокого класса и мощности. Найти такую не очень просто, как и схему её подключения. Конечно, здесь можно применить и многие другие МС с подобными характеристиками (2 или 4 канала по 45 Вт), даташиты на которые без труда можно найти в интернете. Данная же микросхема здесь будет описана немного более подробно для тех, кто захочет применить именно её (рис.4).

Основные характеристики: мощность — 2х45 W или 1х75 W (на нагрузку 1 Om), линейная АЧХ 20. 20 000 Гц, Rвх = 100 кОm.

Минусовые входные выводы 9 и 19 в моём варианте включения соеденины на «землю» (общий провод), НЧ сигнал подаётся на выводы 8 и 20 (соответственно левый и правый канал). В случае установки здесь входных конденсаторов по 0,33 мкФ, конденсатор С6 на выходе фильтра по схеме рис.2 ставить, естественно, не нужно. Как видно, в МС присутствуют различные входы и выходы дополнительного управления, которые в нашем случае не используются и их можно оставить свободными (выводы 3,13,14,16,17,18 и 25 ). Для включения МС в рабочий режим на контакты ST-BY и MUTE нужно подать напряжение питания +U. Микросхема позволяет подключать акустику сопротивлением 1 Ом и может тогда выдать мощность до 75 Вт, но при мостовом включении и, соответственно, в одноканальном режиме. При этом следует соблюдать следующие условия:

  • запараллелить выходы (OUT1+ соединить с OUT2+; OUT1- соединить с OUT2-);
  • минимизировать сопротивление выходного шлейфа, т.е. провода от выхода МС до динамика сделать как можно толще и короче, а для этого сам усилитель должен быть расположен рядом с динамиком. Сопротивления выходного шлейфа очень существенно влияет на коэффициент гармоник;
  • входной сигнал подавать на вход IN2 (IN1 — оставить свободным или заземлить);
  • на вывод «1 Om SETTING» подать U=2,5V (для двухканального варианта по 45 Вт, как в нашем случае, этот выход следует оставить свободным или соединить с общим проводом). Сам не пробовал использовать схему с таким включением для 1 Ом-динамика, так как у меня нет динамиков сопротивлением 1 Ом, поэтому привожу здесь как справку данные для такого варианта, которые смог найти в доступных мне источниках.
Читайте также:  Мощность электродвигателя для ленточного транспортера

Источник питания

Для питания усилителя в целом были использованы два трансформатора мощностью по 60-70 Вт, по одному для для НЧ и СЧ-ВЧ каналов. Один трансформатор достаточной мощности (120 и более Вт) просто не «вписывался» в малогабаритный корпус по высоте. Стабилизаторов тоже, соответственно, два. Питание использованных здесь МС лежит в пределах от 8 до 18 вольт, поэтому трансформатор может быть выбран с соответствующим напряжением на вторичной обмотке и выходным током не менее 3-х ампер без значительной «просадки». После трансформатора ставятся обычные двухполупериодные мостовые выпрямители с диодами нужной мощности, или диодная сборка (например KBU810 на 8 А). Далее выпрямленное напряжение стабилизируется в схеме «умощнённого» стабилизатора на МС типа КРЕН8 или аналогичной с дополнительным регулирующим транзистором (рис.5)

Выходное напряжение стабилизатора может быть в пределах 12 — 17 вольт для достижения максимально возможной мощности при минимуме искажений. В данном случае применена микросхема KIA7812 с напряжением стабилизации 12 вольт и для поднятия выходного напряжения до 15-16 вольт между средним выводом и общим проводом установлен дополнительно стабилитрон на 3-4 вольта (КС133, КС 139). Поднимать напряжение питания до 18 вольт не следует, хоть такой предел и указан в даташитах на МС TDA, так как на практике, в момент включения возможно срабатывание системы внутренней защиты этих микросхем из-за «перегрузки». Можно питать усилители и нестабилизированным напряжением, но это увеличит их нагрев во время работы и уменьшит перегрузочную способность.

Каскады предварительного усиления — фильтры, возможно питать от этих же стабилизаторов, но лучше, всё-таки, сделать для них один общий стабилизатор на 9. 12 вольт для развязки от помех и возможного взаимного влияния полосных каналов.

Все микросхемы (усилители мощности и стабилизаторы), а также дополнительные мощные транзисторы (КТ818 или аналогичные импортные) блока питания следует закрепить на теплоотводах достаточной площади. В моём случае все эти элементы расположены на одном общем теплоотводе, состоящим из двух параллельно закреплённых алюминиевых пластин толщиной 3 мм и размером 70х200 мм. Как правило, большинство микросхем TDA и аналогичных имеют минус питания на корпусе и их можно, соответственно, крепить к одному теплоотводу без изоляционных прокладок. Транзисторы же и микросхемы стабилизатора следует изолировать. Печатные платы в архиве.

Заключение

Использование усилителя по приведённым здесь схемам позволило значительно повысить качество воспроизведения фонограмм даже с использованием акустики среднего уровня и качества. При этом колонки PHILIPS никак не переделывались, а в S-30 были отключены все внутренние пассивные фильтры и СЧ-ВЧ-головка 6ГДВ-1, а НЧ сигнал подавался напрямую на НЧ динамик (25ГДН-1-4). Регулировка уровня НЧ составляющей позволяет сбалансировать общую частотную характеристику всей системы в зависимости от размеров помещения и расстояния слушателя до акустики. Специально для сайта Радиосхемы — А. Барышев.

Источник

Двухполосный усилитель мощности

Усилители мощности низких и высоких частот идентичны и выполнены на комплементарных парах транзисторов. Усилитель построен по схеме с гальванической связью и одинаковой глубиной обратной связи как по переменному, так и по постоянному току, которая составляет 20 дБ.

Высокая линейность усилителя достигнута благодаря симметричному построению всех его каскадов и использованию местных отрицательных обратных связей по току. Устойчивость обеспечивается коррекцией АЧХ по опережению и запаз­дыванию.

Все каскады работают в классе А, за исключением мощны транзисторов, которые работают в классе АВ с относительно высоким значением начального тока. Для управления добротностью подвижной системы громкоговорителя в усилителе мощности низких частот введена положительная обратная связь по току нагрузки. Фазочастотная характеристика (без истокового повторителя) практически линейна в диапазоне частот 20…30 000 Гц.

Принципиальная схема усилителя мощности низких частот показана на рис. 6. На входе усилителя мощности включен истоковый повторитель на полевом тран­зисторе VI типа КП302БМ, входное сопротивление которого определяется сопро­тивлением резистора R2 и равно 150 кОм. Второй, третий и четвертый каскады усилителя мощности — дифференциальные, собраны на -транзисторах V4, V5, V7, V8 и У12, V14.

В первых двух каскадах применены интегральные сборки типа К1НТ591Б, содержащие пары транзисторов (со статическими коэффициентами передачи тока, равными 100).

В четвертом каскаде использованы транзисторы типа КТ814В, также подоб­ранные по статическому коэффициенту передачи тока. Стабильность по постоян­ному току достигается построением входного каскада на сдвоенных транзисторах V4 и V5 в одном корпусе.

Во все дифференциальные каскады введены элементы коррекции по опере­жению (С4, С6, R17, С8), обеспечивающие на частоте 500 кГц спад АЧХ не более 5 дБ. Окончательную форму АЧХ определяет цепь коррекции по запаз­дыванию R11C5 в первом дифференциальном каскаде.

Читайте также:  Номинальная потребляемая мощность духовки

Особое внимание должно быть улелено температурной стабильности, так как усилитель критичен к стабильности настройки средней точки по постоянному току. Смещение средней точки (ОВ) на 0,2 В приводит к нарушению устойчи­вости усилителя, т. е. усилитель возбуждается на частоте примерно 500 кГц.

Для повышения температурной стабильности дифференциальные каскады выполнены на интегральной сборке К1НТ591Б в одном корпусе. Резисторы R20 и R28 — проволочные типа СП5-1А.

clip_image002

Рис. 6. Принципиальная схема низкочастотного усилителя мощности

Конденсаторы должны обладать очень малой утечкой по постоянному току. Замена конденсаторов С1, СЗ типа КМ-6 на биполярные электролитические может привести к нарушению устойчивости усилителя.

Рис. 7. Гармонические и интермодуляционные искажения

Транзисторы V16 имеют тепловой контакт с радиаторами выходных тран­зисторов. Радиаторы должны иметь тепловое сопротивление по отношению к внешней среде 0,75 °С/Вт, что обеспечивается большой площадью. Хорошие результаты дает установка транзистора V16 прямо на плате, рядом с радиатором транзисторов V12, V14, V15, V17, V18.

Для повышения коэффициента усиления и стабильности работы усилителя мощности каскады на транзисторах V4, V5 и V7, V8 питаются от источников тока, выполненных на транзисторах V6 и V9.

Транзисторы V13 и V15 выполняют функции динамической нагрузки (токового зеркала) транзисторов третьего дифференциального каскада. Транзисторы V14 этого каскада и V15 токового зеркала имеют общую нагрузку, функции которой выполняют транзисторы V16V18 и резисторы R27R29, R33, R34, поддерживаю­щие постоянным напряжение между базами транзисторов V17 и V18 предоконеч-ного каскада. Иначе говоря, оба эти транзистора управляются симметричным источником тока с низким выходным сопротивлением около 1 кОм.

Рис. 8. Частотные характеристики

Транзисторы V17 и V18 реботают в режиме А, транзисторы V19 и V20 — в режиме АВ при сравнительно большом токе покоя (200 мА).

Элементы R31, С9, СЮ, СИ, R32, С12 защищают усилитель от высокоча­стотных помех в цепях питания. Диоды V21 и V22 предназначены для защиты выходных транзисторов от перенапряжений при индуктивном характере нагрузки.

Напряжение отрицательной обратной связи снимается с резистора .R41 и подается на левый (по схеме) вход первого дифференциального каскада, а напряжение положительной обратной связи — на его правый вход.

Отрицательная обратная связь действует во всем рабочем диапазоне частот, положительная — только на частотах ниже 100 Гц.

Частота раздела усилителей мощности низких и высоких частот 600 Гц в низкочастотном канале обеспечивается емкостью С15, а в высокочастотном канале емкостями С1=1500 пФ и С3=0,022 мкФ.

Элементы положительной обратной связи (С 14, R43R45), а также емкость С15 монтируются только для низкочастотного канала; в высокочастотном емкости С1=1500 пФ, а С5=0,022 мкФ. Резистор R12 в высокочастотном канале 51 кОм, а в низкочастотном — 11 кОм.

Зависимость коэффициентов гармонических и интермодуляционных иска­жений от мощности на различных частотах показана на рис. 7, а АЧХ и ФЧХ — на рис. 8.

Усилитель был испытан на прохождение прямоугольных сигналов, при этом на переходной характеристике колебательный процесс не наблюдался. Длительность фронта сигнала амплитудой 5 В и частотой 500 кГц примерно составляла 0,1 икс.

Переходные процессы, которые вызывают резкие щелчки низкочастотной головки громкоговорителя, при включении усилителя мощности практически отсутствуют. При выходе из строя одного плеча источника питания или усилителя мощности разбаланс напряжения средней точки не превышает 2 В, что исключает необходимость разработки устройства защиты головок громкоговорителя.

Основные технические характеристики двухполосного усилителя мощности.

Номинальный диапазон частот, Гц, при спаде АЧХ на низко­частотной и высокочастотной границах соответственно на 2,5 и

Максимальная мощность при сопротивлении нагрузки 8 Ом, Вт……………………… 40

Чувствительность, В ………………. 0,45

Номинальная выходная мощность при сопротивлении нагрузки 8 Ом и коэффициенте гармоник 0,04% в диапазоне частот 20…20 000 Гц, Вт . :……………… 30

Коэффициент интермодуляционных искажений при 30 Вт, % . . 0,04

Относительный уровень шумов в номинальном диапазоне частот, измеренный по линейной характеристике, дБ…….. — 75

Выходное сопротивление без положительной обратной связи, Ом……………………… 0,5

Глубина положительной обратной связи в низкочастотном канале, дБ . . . …………………… 10

Глубина отрицательной обратной связи, дБ:

в низкочастотном канале . . …………. 40

в высокочастотном канале…………… 20

Динамический диапазон, дБ……………. 70

Фазочастотная характеристика линейна в диапазоне частот 20…30 000 Гц, на частоте 100 кГц фазовый сдвиг составляет около 14 °.

Источник