Меню

Для чего используют регуляторы прямого действия



Регуляторы прямого и непрямого действия

Системой прямого регулирования называется такая система, у которой измерительный элемент непосредственного связан с регулирующим органом.

Система непрямого регулирования – это система, у которой измерительный элемент воздействует на регулирующий орган через активные устройства.

Активные устройства – это устройства, которые либо содержат источники энергии, либо используют для своей работы энергию посторонних источников.

В регуляторах прямого действия ЧЭ должны развивать значительные усилия, необходимые для перемещения рейки ТНВД. Поэтому регуляторы прямого действия обычно устанавливают на двигателях малой и средней мощности, не требующих высокой точности регулирования и больших перестановочных усилий реек.

Регуляторы непрямого действия используют для автоматизации мощных судовых дизелей и газовых турбин. Они способны развивать необходимую мощность благодаря использованию сервомоторов, которые могут быть гидравлическими, пневматическими и электрическими.

Регуляторы прямого действия отличаются простотой конструкции и принципа действия (рис. 67). При нарушении установившегося режима вследствие уменьшения нагрузки двигателя произойдет увеличение частоты вращения приводного вала 4 и центробежной силы грузов 5. Под действием центробежной силы муфта 6 будет перемещаться влево, преодолевая усилие задающей пружины 7. В результате этого рычаг 10 будет поворачиваться вокруг опоры 11 по часовой стрелке, перемещая посредством тяги 1 топливную рейку 2 на уменьшение подачи топлива в двигатель 3. При увеличении нагрузки работа регулятора будет происходить аналогичным образом, но в противоположном направлении. Управление автоматизированным двигателем производится путем воздействия на тягу 9 изменения задания, которая изменяет с помощью рычага 8 деформацию задающей пружины 7 чувствительного элемента.

Регуляторы непрямого действия в зависимости от наклона статической регуляторной характеристики или типа обратной связи могут быть статическими (пропорциональными) с ЖОС, астатическими (интегральными) без обратной связи и универсально-статическими (ПИ или изодромными) с изодромной обратной связью.

Регуляторы частоты вращения непрямого действия.

В качестве усилителей регуляторов непрямого действия (рис. 73) широкое распространение получили гидравлические сервомоторы (серводвигатели), которые обладают рядом преимуществ по сравнению с другими типами сервомоторов. К этим преимуществам следует отнести высокую скорость сервомотора, возможность мгновенной остановки поршня в любом его положении, большую мощность перестановочного воздействия на регулирующий орган, отсутствие необходимости в смазывании, конструктивную простоту и надежность действия. Управляет движением поршня золотник, связанный с центробежным ЧЭ. Кроме того, в состав регулятора непрямого действия входят вспомогательные устройства, обеспечивающие снабжение усилителя рабочей средой постоянного давления.

Астатический регулятор. Изучение регуляторов непрямого действия целесообразно начать с астатического регулятора (рис. 74). Этот регулятор не получил применения для автоматизации судовых двигателей, однако рассмотрение его обусловлено необходимостью сравнительного анализа с более сложными регуляторами статического и изодромного типов.

При изменении частоты вращения муфта ЧЭ будет перемещать управляющий золотник, который откроет доступ масла высокого давления в одну из полостей сервомотора. В результате воздействия сервопоршня на топливную рейку будет изменяться топливоподача в двигатель, т. е. будет восстанавливаться заданная частота вращения. Окончанию процесса регулирования соответствует возврат золотника в исходное положение под действием центробежных грузов и остановка сервопоршня. При этом расстояние между крайними витками пружины задания останется прежним. Поэтому в новом установившемся режиме будет точно заданное значение частоты вращения.

В отличие от астатического статический регулятор имеет ЖОС, которая осуществляет обратное пропорциональное воздействие сервопоршня на пружину задания ЧЭ, что обусловливает наклон регуляторной характеристики.

Принцип действия статического регулятора частоты вращения (рис. 78) состоит в следующем. При уменьшении нагрузки двигателя и увеличении частоты вращения центробежных грузов произойдет смещение муфты и управляющего золотника влево. В результате этого поршень сервомотора начнет двигаться вправо, уменьшая подачу топлива в двигатель. Одновременно верхний конец С рычага обратной связи будет перемещаться вправо, сжимая пружину задания и возвращая управляющий золотник в исходное положение. Процесс регулирования закончится, когда под действием рычага обратной связи и центробежных грузов золотник вернется в исходное среднее положение и сервопоршень остановится. При этом рычаг обратной связи и пружина окажутся в положении, отличном от исходного. Новому установившемуся режиму будет соответствовать большая деформация пружины задания и более высокая частота вращения вала двигателя, чем в исходном установившемся режиме.

Читайте также:  Измеритель регулятор трм 201

Если установившийся режим будет нарушен в результате увеличения нагрузки двигателя, то работа регулятора будет происходить аналогичным образом, но в противоположном направлении. После окончания процесса регулирования в новом установившемся режиме частота вращения вала двигателя будет меньше, чем в исходном установившемся режиме.

Таким образом, статический регулятор обеспечивает работу двигателя по наклонной регуляторной характеристике, что позволяет, как отмечалось выше, существенно уменьшить перегрузки и недоиспользование мощности двигателя по сравнению с его работой по вертикальной регуляторной характеристике.

В результате действия ЖОС обеспечивается пропорциональная зависимость между положениями поршня сервомотора и частотами вращения вала двигателя при различных нагрузках. Поэтому статические регуляторы называют пропорциональными, или П-регуляторами.

Универсально-статический (изодромный) регулятор. В цепи обратной связи универсально-статического регулятора частоты вращения (рис. 80) показана одна из возможных конструкций изодромного устройства И, состоящего из цилиндра с поршнем и дроссельного клапана К Цилиндр изодрома жестко соединен со штоком сервомотора, а поршень изодрома шарнирно связан с верхним концом рычага обратной связи АВС, на который действует пружина П изодрома. Полости изодрома сообщаются между собой через регулируемое проходное сечение дроссельного клапана.

Работает изодромный регулятор следующим образом. Если нагрузка двигателя уменьшится и произойдет увеличение частоты вращения приводного вала ЧЭ, муфта и управляющий золотник сместятся влево, а поршень сервомотора начнет двигаться вправо, уменьшая подачу топлива в двигатель. Одновременно с поршнем сервомотора будет перемещаться цилиндр изодрома. Вследствие малого проходного сечения дроссельного клапана масло не будет успевать перетекать из одной полости изодрома в другую, поэтому поршень изодрома будет двигаться вместе с его цилиндром. На этом этапе изодромный регулятор работает аналогично статическому регулятору, т. е. обратная связь осуществляет выключающее воздействие на золотник, возвращая его в исходное положение и прекращая движение поршня сервомотора.

Однако на этом работа изодромного регулятора не заканчивается, так как теперь растянувшаяся пружина изодрома перемещает поршень изодрома влево по мере перетекания масла из левой полости изодрома в правую часть через дроссельный клапан. Нетрудно видеть, что это движение поршня изодрома будет происходить до тех пор, пока пружина изодрома не вернется в исходное положение, т. е. ее усилие станет равным нулю. В результате этого может произойти новое открытие окон золотника и дополнительное перемещение поршня |сервомотора на уменьшение подачи топлива. Процесс регулирования закончится, когда поршень изодрома и управляющий золотник (точки С и В) вернутся в исходное положение. При этом в исходном положении окажутся рычаг обратной связи и пружины задания ЧЭ, Поэтому в новом установившемся режиме деформация пружины задания останется прежней и частота вращения вала двигателя будет равна заданной.

При увеличении нагрузки двигателя и уменьшении частоты вращения его вала работа изодромного регулятора будет происходить аналогичным образом, но в противоположном направлении. В новом установившемся режиме с увеличенной подачей топлива частота вращения будет равна также заданному значению.

Читайте также:  Барабанный регулятор скорости потока

Анализируя работу изодромного регулятора, следует заметить, что воздействие обратной связи на ЧЭ в конце процесса регулирования компенсируется в результате перемещения поршня изодрома под действием пружины изодрома. Поэтому изодромную обратную связь называют исчезающей или гибкой. Таким образом, в процессе; регулирования изодромный регулятор в начале переходного процесса действует как пропорциональный, а в конце — как интегральный, что дает основание считать его пропорционально-интегральным, или ПИ-регулятором.

Изодромные регуляторы частоты вращения получили широкое распространение для автоматизации судовых двигателей, так как они обеспечивают высокие динамические качества АСР.

Стремясь обеспечить работу главных двигателей и двигателей генераторов по наклонным регуляторным характеристикам для уменьшения перегрузок и обеспечения возможности параллельной работы, изодромные регуляторы кроме ГОС часто снабжают ЖОС.

Источник

Статический регулятор уровня прямого действия.

Автоматические регуляторы могут быть подразделены по целому ряду признаков: по назначению, характеристике регулирования, способу действия, виду вспомогатель­ной энергии и т. п.

По. назначению регуляторы подразделяются на регуляторы дав­ления, температуры, расхода, влажности, уровня и др.

По характеристике регулирования регуляторы бывают позицион­ные, статические, астатические и статически-астатические (издромные).

По способу действия регуляторы делятся на регуляторы прямого и ‘непрямого действия. Регулятор прямого действия работает за счет энергии, получаемой от самой регулирующей среды.

Регулятор непрямого действия питается энергией от внешнего источника. По виду используемой энергии регуляторы делятся на гидравлические, пневматические, электрические и электронные. Существуют регуляторы, и которых используется несколько видов вспомогательной энергии, как, например, электрогидравлические регуляторы, применяемые в тепловых сетях.

В практике может встретиться также большое разнообразие кон­струкции регуляторов. Однако основные конструктивные схемы ре­гуляторов приведены ниже.

Регуляторы прямого действия

В регуляторах прямого (непосредственного) действия силой, из­меняющей положение регулирующего органа, является усилие, воз­никающее в самом чувствительном элементе за счет изменения регу­лируемого параметра. Связь между чувствительным элементом и ре­гулирующим органом обычно в этого типа регуляторах механиче­ская—с помощью штока или рычажной передачи.

Рассмотрим некоторые тины регуляторов прямого действия. Статический регулятор давления прямого действия. Схема та­кого типа регулятора приведена на рис. 1. В качестве чувстви­тельного элемента принята мембрана 1 , на которую регулируемая линия на мембрану создается сила F1. Эта сила передаётся штоку 3

на котором сидит двухседельный регулирующий клапан 4. находя­щийся в корпусе 5. Сальник 6 служит для -вывода штока во внеш­нюю среду. На шток в противоположном направлении силе Р1 действует сила Р2, создаваемая пружиной 7.

При установившемся состоянии сила, возникающая в мембране Р1, и сила, создаваемая пружиной, уравновешиваются; шток и регу­лирующий клапан находятся в покое. При изменившейся величине регулируемого давления сила Р1 изменится и будет уравновеши­ваться при новом положении штока силой F2, т. е. при новомусилии

Рис. 1. Статический регулятор дав­ления прямого действия

Рис. 2. Астатический регулятор давления прямого действия

создаваемом пружиной. Другими словами, у этого регулятора величина регулируемого давления зависит от положения регулирую­щего клапана, т. е. зависит от расхода. Это является признаком, свойственным статическому регулятору.

В статическом регуляторе скорость перемещения регулирующего органа пропорциональна скорости изменения параметра, но не за­висит от величины отклонения его. Это также является признаком, свойственным статическому регулятору. Этот регулятор не способен вернуть регулируемый параметр к заданному значению. Величина регулируемого параметра будет зависеть от положения клапана, т. е. от степени сжатия пружины.

Читайте также:  Регулятор давления рдук расшифровка

Астатический регулятор давления прямого действия. На рис. 2показан астатический регулятор давления прямого действия. Мем­брана 1 импульсная трубка 2, шток 3, клапан 4, корпус 5, саль­ник 6 такие же, как и в статическом регуляторе. Только здесь на шток действует постоянная сила, создаваемая весом помещенного на рычаге груза 7.

Если давление в трубопроводе за клапаном возрастает, то уси­лие, передаваемое мембраной на шток, увеличивается. Под действием возросшей силы шток начнет опускаться, а клапан будет прикрываться. При этом расход среды уменьшится. Система придет в равновесное состояние, когда силы, действующие на шток от мембраны и от груза, будут равны. При этом, естественно, регулирую­щий клапан будет уже занимать новое положение, но сила, созда­ваемая грузом, останется практически прежней.

Скорость перемещения клапана в данном регуляторе зависит от величины отклонения регулируемого параметра от заданного значения. Степень связи между этими величинами, характеризуе­мую коэффициентом пропорциональности, можно менять с помощью вентиля 8.

Следует отметить, что рассмотренный регулятор давления пря­мого действия практически имеет большую зону нечувствительности и отли­чается значительной неравномерностью, почему может применяться только в случаях, когда не требуется высокое качество регулирования. Неравномерность объясняется реакцией струи и наличием разности диаметров двухседельных клапанов, а также трением в сальнике.

Регуляторы давления прямого действия выпускаются промыш­ленностью диаметрами условного прохода от 50 до 150 мм и позволяют

при различных диаметрах мембраны получить диапазон настройки в широких пределах (от 0,15 до 13 кг/см2 2 ). Примерные га­бариты регулятора по высоте 775—900 мм.

Рассмотренные регуляторы давления могут регулировать давле­ние как до себя, так и после себя. Для этого требуется лишь про­извести изменение положения двухседельного клапана. Вследствие этого регуляторы давления называются соответственно регуляторами давления «до себя» или регуляторами давления «после себя».

Статический регулятор тем­пературы прямого действия.Регулятор температуры прямо­го (непосредственного) дей­ствия приведен на рис. 3.

Рис. 3. Статический регулятор температуры прямого действия

Термопатрон 1 с легко испа­ряющейся жидкостью является чувствительным элементом. В зависимости от температуры жидкости изменяется давление насыщенных паров, заполняю­щих капиллярную трубку 2, а давление в сильфонной каме­ре 3. В корпусе 4 находится клапанная система.

При увеличении температу­ры клапан 5 прикрывается, при­ток теплоносителя (пара, горя­чей воды и т. п.) уменьшается и температура регулируемой среды понижается. Давление паров в термопатроне снижает­ся, и клапан несколько приот­крывается. Масленка 6 направ­ляет смазку в сальник. Настройка

Рис. 4. Статический регулятор уровня прямого действия

стройка регулятора на регулирование производится путем измене­ния натяжения пружины 7.

Статический регулятор температуры прямого действия выпу­скается на любой десятиградусный интервал в пределах от 20 до 160°, диаметром (условного прохода) от 25 до 50 мм.

Габариты клапана соответственно равны: высота А ==325 -345 мм,

длина корпуса Б=140—185 мм.

Статический регулятор уровня прямого действия.

В качестве примера статического регулятора уровня прямого действия можно привести поплавковый регулятор (рис. 4). Регулятор состоит изпоплавка 1, находящегося в поплавковой камере 2. сообщенной с со­судом, в который поступает жидкость через клапан 3. Поплавок и клапан связаны между собой рычажной передачей 4.

При увеличении расхода жидкости из сосуда уровень в нем и в поплавковой

камере понизится, поплавок опустится и приток жид­кости через клапан увеличится. Равновесие наступит при несколько — уровне в баке. Регулятор

способен поддерживать уровень в баке с некоторой неравномерностью (свойство статиче­ского регулятора).

Источник