Меню

Дифференциальное уравнение пид регулятора



Что такое ПИД регулятор — схема подключения

Пропорционально-интегрально-дифференциальный регулятор (ПИД) – устройство для автоматического поддержания в заданном интервале одного или нескольких параметрах. Такие устройства универсальны, при помощи ПИД-регуляторов можно реализовать любые законы регулирования.

Пропорционально-интегрально-дифференциальный регулятор (ПИД) – устройство для автоматического поддержания в заданном интервале одного или нескольких параметрах. Такие устройства универсальны, при помощи ПИД-регуляторов можно реализовать любые законы регулирования.

Они учитывают фактическая величину, заданное значение, разность значений и скорость изменения контролируемых характеристик.

Регуляторы такого типа широко применяются в локальных системах управления промышленным оборудованием, централизованных АСУТП, в робототехнике. Устройства позволяют быстро возвращать регулируемый параметр в допустимый интервал, точно удерживать величину и быстро реагировать на возмущающие воздействия.

Составляющие сигнала ПИД-регулятора

Управляющий сигнал, формируемый ПИД-регулятором, сумма трех составляющих:

  • Пропорциональной.
  • Интегральной.
  • Дифференциальной.

Схема ПИД-регулятора

Пропорциональная составляющая формируется исходя из разницы заданной величины параметра и его фактического значения. Чем больше отклонение характеристики, тем выше уровень пропорционального сигнала. Устройства, управляющие системой, только по пропорциональному закону называются П-регуляторы.

Схема ПИД-регулятора

Основной недостаток такого регулирования – статическая ошибка, которая указывает на величину остаточного отклонения параметра. Пропорциональные регуляторы имеют ограниченную точность.

Для ее устранения введена интегральная составляющая. Она пропорциональна интегралу по времени от отклонения величины контролируемой характеристики.

При отклонении параметра, пропорциональная составляющая возвращает его к прежнему значению. Уровень сигнала на выходе стремится к нулю, однако благодаря статической ошибке, регулируемый параметр не достигает заданной величины. Интегральная компонента обеспечивает компенсацию ошибки и позволяет возвращать характеристику к заданным значениям.

Пропорционально-интегральное управление обладает невысоким быстродействием и не подходит для регулирования динамичных систем. Накопление и суммирование ошибок приводит к росту управляющего сигнала. Система может «пойти в разнос».

Пропорционально интегральное управление пид регулятора

Для увеличения быстродействия в конструкцию регулятора введена дифференциальная составляющая. Она увеличивается и уменьшается пропорционально скорости изменения контролируемого параметра.

Таким образом, результирующий сигнал на выходе ПИД-регулятора можно определить из выражения:

где Kp, Ki, Kd – пропорциональный, интегральный, дифференциальный коэффициенты соответственно, e(t) – ошибка рассогласования.

Настройки ПИД-регулятора

Наладка ПИД-регулятора сводится к определению коэффициентов Kp, Ki, Kd. Компоненты определяются из формулы:

По ним определяются передаточные функции системы автоматического регулирования и вычисляются ее параметры:

  • Точность.
  • Скорость регулирования.
  • Форма графиков переходных процессов.
  • Инерционность.
  • Другие величины и функции.

Математическая модель САР не может дать полного представления о работе системы. Расчеты выполняются для «идеального регулятора». Нелинейность контролируемых параметров, внешние возмущения, помехи на объекте управления не позволяют применять данные расчетов для построения системы автоматического регулирования на практике. Результаты математических расчетов используют как вспомогательные данные.

Читайте также:  Регулятор тормозных усилий форд сиерра

При разработке ПИД-регуляторов и САР используют оборудование, имитирующее изменение контролируемых характеристик, измерительные приборы и ПК. Устройства позволяют определить и анализировать реакцию системы на воздействия и более точно подобрать коэффициенты.

На практике применяется опытный подбор коэффициентов. ПИД-регуляторы устанавливают на объекте, вводят коэффициенты, полученные при расчете или стендовых испытаниях, настраивают параметры на месте.

Пример применения ПИД-регулятора в частотно-регулируемом приводе насоса

Схемы преобразователей частоты содержат управляющие контроллеры, которые могут обеспечить работу устройства в режиме ПИ или ПИД-регулятора. Специализированные частотники часто уже имеют предустановленные настройки, которые корректируют после установки оборудования.

На рисунке представлена простейшая ПИД схема управления насосом по давлению. К аналоговым входам подключены датчик, установленный на напорном трубопроводе, и внешнее задающее устройство. Требуемое значение давления также можно задавать в настройках регулятора. При изменении регулируемого параметра на контроллере, сравнивающим сигнал обратной связи с заданным значением, формируется управляющий сигнал.

Преобразователь изменяет производительность насоса путем увеличения или снижения частоты питающего напряжения электродвигателя до тех пор, пока давление в системе не достигнет заданного значения. Таким образом, давление в системе не зависит от расхода.

Приведенная схема сильно упрощена. Частотные преобразователи с ПИД-регулятором могут управлять производительностью по нескольким параметрам. Например, насосы в отопительных системах могут регулироваться по температуре теплоносителя и тепловому режиму на улице и в помещении и давлению.

Преобразователи частоты с функциями ПИД-регулятора применяют также в сложных системах регулирования тягодутьевых систем и других АСУТП.

Источник

Что такое ПИД регулятор для чайников?

Содержание

  1. Что такое ПИД регулятор?
  2. Три коэффициента ПИД регулятора и принцип работы
  3. Настройка ПИД регулятора
  4. Назначение ПИД регулятора
  5. Пример схемы регулирования температуры

Дифференциальный пропорционально-интегральный регулятор — устройство, которое устанавливают в автоматизированных системах для поддержания заданного параметра, способного к изменениям.

На первый взгляд все запутанно, но можно объяснить ПИД регулирование и для чайников, т.е. людей, не совсем знакомых с электронными системами и приборами.

Что такое ПИД регулятор?

ПИД регулятор — прибор, встроенный в управляющий контур, с обязательной обратной связью. Он предназначен для поддержания установленных уровней задаваемых величин, например, температуры воздуха.

Устройство подает управляющий или выходной сигнал на устройство регулирования, на основании полученных данных от датчиков или сенсоров. Контроллеры обладают высокими показателями точности переходных процессов и качеством выполнения поставленной задачи.

Читайте также:  Как проверить реле регулятор камаз 4310

Три коэффициента ПИД регулятора и принцип работы

Работа ПИД-регулятора заключается в подаче выходного сигнала о силе мощности, необходимой для поддержания регулируемого параметра на заданном уровне. Для вычисления показателя используют сложную математическую формулу, в составе которой есть 3 коэффициента — пропорциональный, интегральный, дифференциальный.

Возьмем в качестве объекта регулирования ёмкость с водой, в которой необходимо поддерживать температуру на заданном уровне с помощью регулирования степени открытия клапана с паром.

Пропорциональная составляющая появляется в момент рассогласования с вводными данными. Простыми словами это звучит так — берется разница между фактической температурой и желаемой, умножается на настраиваемый коэффициент и получается выходной сигнал, который должен подаваться на клапан. Т.е. как только градусы упали, запускается процесс нагрева, поднялись выше желаемой отметки — происходит выключение или даже охлаждение.

Дальше вступает интегральная составляющая, которая предназначена для того, чтобы компенсировать воздействие окружающей среды или других возмущающих воздействий на поддержание нашей температуры на заданном уровне. Поскольку всегда присутствуют дополнительные факторы, влияющие на управляемые приборы, в момент поступления данных для вычисления пропорциональной составляющей, цифра уже меняется. И чем больше внешнее воздействие, тем сильнее происходят колебания показателя. Происходят скачки подаваемой мощности.

Интегральная составляющая пытается на основе прошлых значений температуры, вернуть её значение, если оно поменялось. Подробнее процесс описан в видео ниже.

А дальше выходной сигнал регулятора, согласно коэффициенту, подается для повышения или понижения температуры. Со временем подбирается та величина, которая компенсирует внешние факторы, и скачки исчезают.

Интеграл используется для исключения ошибок путем расчета статической погрешности. Главное в этом процессе — подобрать правильный коэффициент, иначе ошибка (рассогласование) будет влиять и на интегральную составляющую.

Третий компонент ПИД — дифференцирующий. Он предназначен для компенсации влияния задержек, возникающих между воздействием на систему и обратной реакцией. Пропорциональный регулятор подает мощность до тех пор, пока температура не достигнет нужной отметки, но при прохождении информации к прибору, особенно при больших значениях, ошибки всегда возникают. Это может привести к перегреву. Дифференциал прогнозирует отклонения, вызванные задержками или воздействием внешней среды, и снижает подаваемую мощность заранее.

Настройка ПИД регулятора

Настройка ПИД-регулятора осуществляется 2 методами:

  1. Синтез подразумевает вычисление параметров на основании модели системы. Такая настройка получается точной, но требует глубоких познаний теории автоматического управления. Она подвластна только инженерам и ученым. Так как необходимо снимать расходные характеристики и производить кучу расчетов.
  2. Ручной способ основывается на методе проб и ошибок. Для этого за основу берутся данные уже готовой системы, вносятся некоторые коррективы в один или несколько коэффициентов регулятора. После включения и наблюдений за конечным результатом проводится изменение параметров в нужном направлении. И так до тех пор, пока не будет достигнут нужный уровень работоспособности.
Читайте также:  Регулятор частоты вращения однофазного асинхронного двигателя

Теоретический метод анализа и настройки на практике применяются крайне редко, что связано с незнанием характеристик объекта управления и кучей возможных возмущающих воздействий. Более распространены экспериментальные методы на основе наблюдения за системой.

Современные автоматизированные процессы реализуются как специализированные модули под управлением программ для настройки коэффициентов регулятора.

Назначение ПИД регулятора

ПИД регулятор предназначен для поддержания на требуемом уровне некой величины — температуры, давления, уровня в резервуаре, расхода в трубопроводе, концентрации чего-либо и т.д., изменением управляющего воздействия на исполнительные механизмы, такие как автоматические регулирующие клапана, используя для этого пропорциональную, интегрирующую, дифференцирующую величины для своей настройки.

Целью использования является получение точного управляющего сигнала, который способен контролировать большие производства и даже реакторы электростанций.

Пример схемы регулирования температуры

Часто ПИД регуляторы используются при регулировке температуры, давайте на простом примере подогрева воды в ёмкости рассмотрим данный автоматический процесс.

В емкости налита жидкость, которую нужно подогреть до нужной температуры и поддерживать её на заданном уровне. Внутри бака установлен датчик измерения температуры — термопара или термометр сопротивления и напрямую связан с ПИД-регулятором.

Для подогрева жидкости будем подавать пар, как показано ниже на рисунке, с клапаном автоматического регулирования. Сам клапан получает сигнал от регулятора. Оператор вводит значение температурной уставки в ПИД-регуляторе, которую необходимо поддерживать в ёмкости.

Если настройки коэффициентов регулятора неверны, будут происходить скачки температуры воды, при этом клапан будет то полностью открыт, то полностью закрыт. В этом случае необходимо рассчитать коэффициенты ПИД регулятора и ввести их заново. Если все сделано правильно, через небольшой промежуток времени система выровняет процесс и температура в ёмкости будет поддерживаться на заданной отметке, при этом степень открытия регулирующего клапана будет находиться в среднем положении.

Источник