Меню

Действия с мощностями множеств



Мощность множества: примеры. Мощность объединения множеств

Достаточно часто в математической науке возникает ряд трудностей и вопросов, причем многие ответы не всегда проясняются. Не исключением стала такая тема, как мощность множеств. По сути, это не что иное как численное выражение количества объектов. В общем смысле множество является аксиомой, у него нет определения. В основе лежат любые объекты, а точнее их набор, который может носить пустой, конечный или бесконечный характер. Кроме этого, он содержит числа целые или натуральные, матрицы, последовательности, отрезки и прямые.

Мощность множества

О существующих переменных

Нулевой или пустой набор, не имеющий собственного значения, считается элементом мощности, так как это подмножество. Сбор всех подмножеств непустого множества S является множеством множеств. Таким образом, набор мощности заданного множества считается многим, мыслимым, но единым. Это множество называется множеством степеней S и обозначается P (S). Если S содержит N элементов, то P (S) содержит 2 ^ n подмножеств, так как подмножество P (S) является либо ∅, либо подмножеством, содержащим r элементов из S, r = 1, 2, 3, . Составленное из всего бесконечного множества M называется степенным количеством и символически обозначается P (M).

Элементы теории множеств

Эта область знаний была разработана Джорджем Кантором (1845-1918 годы жизни). Сегодня она используется почти во всех отраслях математики и служит ее фундаментальной частью. В теории множеств элементы представлены в форме списка и заданы типами (пустой набор, одноэлементный, конечные и бесконечные множества, равные и эквивалентные, универсальные), объединение, пересечение, разность и дополнение чисел. В повседневной жизни часто говорится о коллекции таких объектов, как куча ключей, стая птиц, пачка карточек и т. д. В математике 5 класса и не только, встречаются натуральные, целые, простые и составные числа.

Можно рассмотреть следующие множества:

  • натуральные числа;
  • буквы алфавита;
  • первичные коэффициенты;
  • треугольники с разными значениями сторон.
Читайте также:  Кабель 4 мм2 мощность сечением допустимая

Видно, что эти указанные примеры представляют собой четко определенные множества объектов. Рассмотрим еще несколько примеров:

  • пять самых известных ученых мира;
  • семь красивых девушек в обществе;
  • три лучших хирурга.

Эти примеры мощности множества не являются четко определенными коллекциями объектов, потому, что критерий «наиболее известных», «самых красивых», «лучших» варьируется от человека к человеку.

Мощность множества примеры

Наборы

Это значение представляет собой четко определенное количество различных объектов. Предположив, что:

  • набор слов является синонимом, агрегатом, классом и содержит элементы;
  • объекты, члены являются равными по значению терминами;
  • наборы обычно обозначаются прописными буквами A, B, C;
  • элементы набора представлены маленькими буквами a, b, c.

Если «a» — элемент множества A, то говорится, что «a» принадлежит A. Обозначим фразу «принадлежит» греческим символом «∈» (epsilon). Таким образом, выходит, что a ∈ A. Если ‘b’ — элемент, который не принадлежит A, это представляется как b ∉ A. Некоторые важные наборы, используемые в математике 5 класса, представляют, используя три следующих метода:

  • заявки;
  • реестров или табличные;
  • правило создания построения.

При детальном рассмотрении форма заявления основана на следующем. В этом случае задано четкое описание элементов множества. Все они заключены в фигурные скобки. Например:

  • множество нечетных чисел, меньших 7 — записывается как <меньше 7>;
  • набор чисел больше 30 и меньше 55;
  • количество учеников класса, вес которых больше, чем учителя.

В форме реестра (табличной) элементы набора перечислены в паре скобок <> и разделены запятыми. Например:

  1. Пусть N обозначает множество первых пяти натуральных чисел. Следовательно, N = → форма реестра
  2. Набор всех гласных английского алфавита. Следовательно, V = → форма реестра
  3. Множество всех нечетных чисел меньше 9. Следовательно, X = <1, 3, 5, 7>→ форма реестра
  4. Набор всех букв в слове «Математика». Следовательно, Z = → Форма реестра
  5. W — это набор последних четырех месяцев года. Следовательно, W = <сентябрь, октябрь, ноябрь, декабрь>→ реестр.

Стоит отметить, что порядок, в котором перечислены элементы, не имеет значения, но они не должны повторяться. Установленная форма построения, в заданном случае правило, формула или оператор записываются в пару скобок, чтобы набор был корректно определен. В форме set builder все элементы должны обладать одним свойством, чтобы стать членом рассматриваемого значения.

В этой форме представления набора элемент множества описывается с помощью символа «x» или любой другой переменной, за которой следует двоеточие («:» или «|» используется для обозначения). Например, пусть P — множество счетных чисел, большее 12. P в форме set-builder написано, как — <счетное число и больше 12>. Это будет читаться определенным образом. То есть, «P – множество элементов x, такое, что x является счетным числом и больше 12».

Решенный пример с использованием трех методов представления набора: количество целых чисел, лежащих между -2 и 3. Ниже приведены примеры различных типов наборов:

  1. Пустой или нулевой набор, который не содержит какого-либо элемента и обозначается символом ∅ и считывается как phi. В форме списка ∅ имеет написание <>. Пустым является конечное множество, так как число элементов 0. Например, набор целых значений меньше 0.
  2. Очевидно, что их не должно быть 15 декабря, 2017

Источник