Меню

Даны три множества мощность каждого равна 10



Множества

Даны три множества Х1, Х2, Х3, содержащие целые числа из диапазона 1..100. Известно, что мощность каждого из этих множеств равна 10.

Сформировать новое множество Y=(Х1Х2) (Х2\ Х3), из которого выделить подмножество нечетных чисел. На экран вывести исходные и полученное множества. Значения элементов исходных множеств ввести с клавиатуры.

Даны три множества Х1, Х2, Х3, содержащие целые числа из диапазона 1..100. Известно, что мощность каждого из этих множеств равна 10.

Сформировать новое множество Y=(Х1Х2) (Х2 × Х3) и вывести на экран его мощность. Проверить, есть ли в множестве Y числа, делящиеся на 6 без остатка. Значения элементов исходных множеств ввести с клавиатуры.

Даны два множества М и N, состоящие из 10 целых чисел из диапазона 1..100. Из данных множеств выделить соответственно подмножества М1 чисел, делящихся на 3 без остатка, и N1 чисел, делящихся на 2 без остатка. На печать вывести мощность и значения элементов множества MN= М1N1.

Даны три множества Х1, Х2, Х3, содержащие целые числа из диапазона 100. 200. Известно, что мощность каждого из этих множеств равна 10.

Сформировать новое множество Y=( Х1 Х2) (Х1 Х3). На печать вывести множества Х1, Х2, Х3 и Y.

Даны три множества Х1= <1,2,3. 20>, Х2= <10,20,30. 30>и Х3= <1,3,5. 19,21>. Сформировать множество Y= (Х1 Х2) (Х1 Х3) (Х2 Х3), из которого выделить подмножество Y1 чисел, делящихся на 4 без остатка. На печать вывести множество Y и мощность множества Y1. Исходные множества ввести с клавиатуры.

Сформировать множество Y= (Х2 Х3)\(( Х1 Х2) (Х1 Х3)) и множество Y1, состоящее из элементов Y, деленных на 2. Если полученное в результате деления число не целое, то округлить его до ближайшего целого. На печать вывести Y и Y1. Исходные множества ввести с клавиатуры.

Даны три множества Х1= <2,4,6,8,10>, Х2= <1,2,3,4,5>и Х3= <2,3,5,7,8>. Сформировать множество Y= (Х2\ Х3) (Х1\ Х3). На печать вывести Y и его мощность. Исходные множества описать как типизированные константы.

Разработать программу для определения, какому алфавиту (латинскому или русскому) принадлежит введенный с клавиатуры символ. На печать вывести введенный символ с комментарием, например НАБРАН СИМВОЛ «А» НА РУССКОМ РЕГИСТРЕ.

Перечислимый тип

имя = (Аня, Валя, Женя, Петя,

Саша, Таня, Шура, Юра);

группа = array [имя] of данные;

Описать функцию СредРост(ГР), определяющую средний рост женщин из группы ГР.

массив = array[1..20] of рац;

Описать логическую функцию Равно(a, b), сравнивающую два рациональных числа a и b.

Даны комплексное число z (пара вещественных чисел) и вещественное число > 0. Вычислить с точностью значение следующей комплексной функции:

3.1 sh z = z + z 3 / 3! + z 5 / 5! + … + z 2n+1 / (2n + 1)! + …;

3.2 ch z = z + z 2 / 2! + z 4 / 4! + … + z 2n / (2n)! + …;

3.3 sin z = zz 3 / 3! + z 5 / 5! – …+ (–1) n z 2n+1 / (2n + 1)! + …;

3.4 cos z = zz 2 / 2! + z 4 / 4! – … + (–1) n z 2n / (2n)! + …;

3.5 ln (1 + z) = zz 2 / 2 + z 3 / 3 – … + (–1) n-1 z n / n + … (| z | 3 /3 + z 5 /5 –…+ (–1) n z 2n+1 /(2n + 1) +… (| z | 7 / 13 7 8 9 10 11 12 13 > Следующая > >>

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Источник

Мощность множества: примеры. Мощность объединения множеств

Достаточно часто в математической науке возникает ряд трудностей и вопросов, причем многие ответы не всегда проясняются. Не исключением стала такая тема, как мощность множеств. По сути, это не что иное как численное выражение количества объектов. В общем смысле множество является аксиомой, у него нет определения. В основе лежат любые объекты, а точнее их набор, который может носить пустой, конечный или бесконечный характер. Кроме этого, он содержит числа целые или натуральные, матрицы, последовательности, отрезки и прямые.

Читайте также:  Суммарная мощность колонки что это

Мощность множества

О существующих переменных

Нулевой или пустой набор, не имеющий собственного значения, считается элементом мощности, так как это подмножество. Сбор всех подмножеств непустого множества S является множеством множеств. Таким образом, набор мощности заданного множества считается многим, мыслимым, но единым. Это множество называется множеством степеней S и обозначается P (S). Если S содержит N элементов, то P (S) содержит 2 ^ n подмножеств, так как подмножество P (S) является либо ∅, либо подмножеством, содержащим r элементов из S, r = 1, 2, 3, . Составленное из всего бесконечного множества M называется степенным количеством и символически обозначается P (M).

Элементы теории множеств

Эта область знаний была разработана Джорджем Кантором (1845-1918 годы жизни). Сегодня она используется почти во всех отраслях математики и служит ее фундаментальной частью. В теории множеств элементы представлены в форме списка и заданы типами (пустой набор, одноэлементный, конечные и бесконечные множества, равные и эквивалентные, универсальные), объединение, пересечение, разность и дополнение чисел. В повседневной жизни часто говорится о коллекции таких объектов, как куча ключей, стая птиц, пачка карточек и т. д. В математике 5 класса и не только, встречаются натуральные, целые, простые и составные числа.

Можно рассмотреть следующие множества:

  • натуральные числа;
  • буквы алфавита;
  • первичные коэффициенты;
  • треугольники с разными значениями сторон.

Видно, что эти указанные примеры представляют собой четко определенные множества объектов. Рассмотрим еще несколько примеров:

  • пять самых известных ученых мира;
  • семь красивых девушек в обществе;
  • три лучших хирурга.

Эти примеры мощности множества не являются четко определенными коллекциями объектов, потому, что критерий «наиболее известных», «самых красивых», «лучших» варьируется от человека к человеку.

Мощность множества примеры

Наборы

Это значение представляет собой четко определенное количество различных объектов. Предположив, что:

  • набор слов является синонимом, агрегатом, классом и содержит элементы;
  • объекты, члены являются равными по значению терминами;
  • наборы обычно обозначаются прописными буквами A, B, C;
  • элементы набора представлены маленькими буквами a, b, c.

Если «a» — элемент множества A, то говорится, что «a» принадлежит A. Обозначим фразу «принадлежит» греческим символом «∈» (epsilon). Таким образом, выходит, что a ∈ A. Если ‘b’ — элемент, который не принадлежит A, это представляется как b ∉ A. Некоторые важные наборы, используемые в математике 5 класса, представляют, используя три следующих метода:

  • заявки;
  • реестров или табличные;
  • правило создания построения.

При детальном рассмотрении форма заявления основана на следующем. В этом случае задано четкое описание элементов множества. Все они заключены в фигурные скобки. Например:

  • множество нечетных чисел, меньших 7 — записывается как <меньше 7>;
  • набор чисел больше 30 и меньше 55;
  • количество учеников класса, вес которых больше, чем учителя.

В форме реестра (табличной) элементы набора перечислены в паре скобок <> и разделены запятыми. Например:

  1. Пусть N обозначает множество первых пяти натуральных чисел. Следовательно, N = → форма реестра
  2. Набор всех гласных английского алфавита. Следовательно, V = → форма реестра
  3. Множество всех нечетных чисел меньше 9. Следовательно, X = <1, 3, 5, 7>→ форма реестра
  4. Набор всех букв в слове «Математика». Следовательно, Z = → Форма реестра
  5. W — это набор последних четырех месяцев года. Следовательно, W = <сентябрь, октябрь, ноябрь, декабрь>→ реестр.

Стоит отметить, что порядок, в котором перечислены элементы, не имеет значения, но они не должны повторяться. Установленная форма построения, в заданном случае правило, формула или оператор записываются в пару скобок, чтобы набор был корректно определен. В форме set builder все элементы должны обладать одним свойством, чтобы стать членом рассматриваемого значения.

В этой форме представления набора элемент множества описывается с помощью символа «x» или любой другой переменной, за которой следует двоеточие («:» или «|» используется для обозначения). Например, пусть P — множество счетных чисел, большее 12. P в форме set-builder написано, как — <счетное число и больше 12>. Это будет читаться определенным образом. То есть, «P – множество элементов x, такое, что x является счетным числом и больше 12».

Решенный пример с использованием трех методов представления набора: количество целых чисел, лежащих между -2 и 3. Ниже приведены примеры различных типов наборов:

  1. Пустой или нулевой набор, который не содержит какого-либо элемента и обозначается символом ∅ и считывается как phi. В форме списка ∅ имеет написание <>. Пустым является конечное множество, так как число элементов 0. Например, набор целых значений меньше 0.
  2. Очевидно, что их не должно быть 15 декабря, 2017

Источник

Решение некоторых задач по теории множеств

Разделы: Математика

На математическом кружке вместе с учащимися рассматривался ряд задач, благодаря наглядности которых, процесс решения становится понятным и интересным. На первый взгляд им хочется составить систему уравнений, но в процессе решения остается много неизвестных, что ставит их в тупик. Для того, чтобы уметь решать эти задачи, необходимо предварительно рассмотреть некоторые теоретические разделы теории множеств.

Введем определение множества, а так же некоторые обозначения.

Под множеством мы будем понимать такой набор, группу, коллекцию элементов, обладающих каким-либо общим для них всех свойством или признаком.

Множества обозначим А, В, С…, а элементы множеств а, b, с…, используя латинский алфавит.

Можно сделать такую запись определения множества:

“ ” – принадлежит;
“=>“ – следовательно;
“ø” – пустое множество, т.е. не содержащее ни одного элемента.

Два множества будем называть равными, если они состоят из одних и тех же элементов

Если любой элемент из множества А принадлежит и множеству В, то говорят, что множество А включено в множество В, или множество А является подмножеством множества В, или А является частью В, т.е. если , то , где “С” знак подмножества или включения.

Графически это выглядит так (рис.1):

Можно дать другое определение равных множеств. Два множества называются равными, если они являются взаимными подмножествами.

Рассмотрим операции над множествами и их графическую иллюстрацию (рис.2).

Объединением множеств А и В называется множество С, образованное всеми элементами, которые принадлежат хотя бы одному из множеств А или В. Слова “или ” ключевое в понимании элементов входящих в объединение множеств.

Это определение можно записать с помощью обозначений:

где “ υ ” – знак объединения,

“ / ” – заменяет слова ”таких что“

Пресечение двух множеств А и В называется множество С, образованное всеми элементами, которые принадлежат и множеству А, и множеству В. Здесь уже ключевое слово “и”. Запишем коротко:

“∩“ – знак пересечения. (рис.3)

Обозначим буквой Е основное или универсальное множество, где A С Е (“ ”- любо число), т.е. А Е = Е; А Е =А

Множество всех элементов универсального множества Е, не принадлежащих множеству А называется дополнением множества А до Е и обозначается Ā Е или Ā (рис.4)

Е

Примерами для понимания этих понятий являются свойства:

А Ā=Е Ø = Е Е Ā=Ā

Свойства дополнения имеют свойства двойственности:

Введем еще одно понятие – это мощность множества.

Для конечного множества А через m (A) обозначим число элементов в множестве А.

Из определение следуют свойства:

Для любых конечных множеств справедливы так же утверждения:

m (A B) =m (A) + m (В) – m (А∩В)

m (A∩B) = m (A) + m (В) – m (А В)

m (A B C) = m (A) + m (В) + m (С)– m (А∩В) — m (А∩С) – m (В∩С) – m (А∩В∩С).

А теперь рассмотрим ряд задач, которые удобно решать, используя графическую иллюстрацию.

Задача №1

В олимпиаде по математике для абитуриентов приняло участие 40 учащихся, им было предложено решить одну задачу по алгебре, одну по геометрии и одну по тригонометрии. По алгебре решили задачу 20 человек, по геометрии – 18 человек, по тригонометрии – 18 человек.

По алгебре и геометрии решили 7 человек, по алгебре и тригонометрии – 9 человек. Ни одной задачи не решили 3 человека.

  1. Сколько учащихся решили все задачи?
  2. Сколько учащихся решили только две задачи?
  3. Сколько учащихся решили только одну задачу?

Задача № 2

Первую или вторую контрольные работы по математике успешно написали 33 студента, первую или третью – 31 студент, вторую или третью – 32 студента. Не менее двух контрольных работ выполнили 20 студентов.

Сколько студентов успешно решили только одну контрольную работу?

Задача № 3

В классе 35 учеников. Каждый из них пользуется хотя бы одним из видов городского транспорта: метро, автобусом и троллейбусом. Всеми тремя видами транспорта пользуются 6 учеников, метро и автобусом – 15 учеников, метро и троллейбусом – 13 учеников, троллейбусом и автобусом – 9 учеников.

Сколько учеников пользуются только одним видом транспорта?

Решение задачи № 1

Запишем коротко условие и покажем решение:

  • m (Е) = 40
  • m (А) = 20
  • m (В) = 18
  • m (С) = 18
  • m (А∩В) = 7
  • m (А∩С) = 8
  • m (В∩С) = 9

m (А В С) = 3 => m (А В С) = 40 – 3 = 37

Обозначим разбиение универсального множества Е множествами А, В, С (рис.5).

К 1 – множество учеников, решивших только одну задачу по алгебре;

К 2 – множество учеников, решивших только две задачи по алгебре и геометрии;

К 3 – множество учеников, решивших только задачу по геометрии;

К 4 – множество учеников, решивших только две задачи по алгебре и тригонометрии;

К 5 – множество всех учеников, решивших все три задачи;

К 6 – множество всех учеников, решивших только две задачи, по геометрии и тригонометрии;

К 7 – множество всех учеников, решивших только задачу по тригонометрии;

К 8 – множество всех учеников, не решивших ни одной задачи.

Используя свойство мощности множеств и рисунок можно выполнить вычисления:

  • m (К 5 ) = m (А∩В∩С)= m (А В С) — m (А) — m (В) — m (С) + m (А∩В) + m (А∩С) + m (В∩С)
  • m (К 5 ) = 37-20-18-18+7+8+9=5
  • m (К 2 ) = m (А∩В) — m (К 5 ) = 7-5=2
  • m (К 4 ) = m (А∩С) — m (К 5 ) = 8-5=3
  • m (К 6 ) = m (В∩С) — m (К 5 ) = 9-5=4
  • m (К 1 ) = m (А) — m (К 2 ) — m (К 4 ) — m (К 5 ) = 20-2-3-5=10
  • m (К 3 ) = m (В) — m (К 2 ) — m (К 6 ) — m (К 5 ) = 18-2-4-5=7
  • m (К 7 ) = m (С) — m (К4) — m (К 6 ) — m (К 5 ) = 18-3-4-5 =6
  • m (К 2 ) + m (К 4 ) + m (К6) = 2+3+4=9 – число учеников решивших только две задачи;
  • m (К 1 ) + m (К 3 ) + m (К 7 ) = 10+7+6=23 – число учеников решивших только одну задачу.

Ответ:

5 учеников решили три задачи;

9 учеников решили только по две задачи;

23 ученика решили только по одной задаче.

С помощью этого метода можно записать решения второй и третьей задачи так:

Решение задачи № 2

  • m (А В) = 33
  • m (А С) = 31
  • m (В С) = 32
  • m (К 2 ) + m (К 4 ) + m (К 6 ) + m (К 5 ) = 20

Найти m (К 1 ) + m (К 3 ) + m (К 7 )

  • m (АUВ) = m (К 1 ) + m (К 2 ) + m (К 3 ) + m (К 4 ) + m (К 5 ) + m (К 6 ) = m (К 1 ) + m (К 3 ) + 20 = 33 =>
  • m (К 1 ) + m (К 3 ) = 33 – 20 = 13
  • m (АUС) = m (К 1 ) + m (К 4 ) + m (К 2 ) + m (К 5 ) + m (К 6 ) + m (К 7 ) = m (К 1 ) + m (К 7 ) + 20 = 31 =>
  • m (К 1 ) + m (К 7 ) = 31 – 20 = 11
  • m (ВUС) = m (К 3 ) + m (К 2 ) + m (К 5 ) + m (К 6 ) + m (К 7 ) + m (К 4 ) = m (К 3 ) + m (К 7 ) + 20 = 32 =>
  • m (К 3 ) + m (К 7 ) = 32 – 20 = 12
  • 2m (К 1 ) + m (К 3 ) + m (К 7 ) = 13+11=24
  • 2m (К 1 ) + 12 = 24
  • m (К 3 )= 13-6=7
  • m (К 7 )=12-7=5
  • m (К 1 ) + m (К 3 ) + m (К 7 ) = 6+7+5=18

Ответ:

Только одну контрольную работу решили 18 учеников.

Решение задачи № 3

  • m (Е) = 35
  • m (А∩В∩С)= m (К 5 ) = 6
  • m (А∩В)= 15
  • m (А∩С)= 13
  • m (В∩С)= 9

Найти m (К1) + m (К3) + m (К 7 )

  • m (К 2 ) = m (А∩В) — m (К 5 ) = 15-6=9
  • m (К 4 ) = m (А∩С) — m (К 5 ) = 13-6=7
  • m (К 6 ) = m (В∩С) — m (К 5 ) = 9-6=3
  • m (К 1 ) + m (К 3 ) + m (К 7 ) = m (Е) — m (К 4 ) — m (К 2 ) — m (К 6 ) — m (К 5 ) = 35-7-9-3-6=10

Ответ:

Только одним видом транспорта пользуется 10 учеников.

Литература: А.Х. Шахмейстер «Множества. Функции. Последовательности»

Источник