Меню

Дано множество как найти мощность



Мощность множества: примеры. Мощность объединения множеств

Достаточно часто в математической науке возникает ряд трудностей и вопросов, причем многие ответы не всегда проясняются. Не исключением стала такая тема, как мощность множеств. По сути, это не что иное как численное выражение количества объектов. В общем смысле множество является аксиомой, у него нет определения. В основе лежат любые объекты, а точнее их набор, который может носить пустой, конечный или бесконечный характер. Кроме этого, он содержит числа целые или натуральные, матрицы, последовательности, отрезки и прямые.

Мощность множества

О существующих переменных

Нулевой или пустой набор, не имеющий собственного значения, считается элементом мощности, так как это подмножество. Сбор всех подмножеств непустого множества S является множеством множеств. Таким образом, набор мощности заданного множества считается многим, мыслимым, но единым. Это множество называется множеством степеней S и обозначается P (S). Если S содержит N элементов, то P (S) содержит 2 ^ n подмножеств, так как подмножество P (S) является либо ∅, либо подмножеством, содержащим r элементов из S, r = 1, 2, 3, . Составленное из всего бесконечного множества M называется степенным количеством и символически обозначается P (M).

Элементы теории множеств

Эта область знаний была разработана Джорджем Кантором (1845-1918 годы жизни). Сегодня она используется почти во всех отраслях математики и служит ее фундаментальной частью. В теории множеств элементы представлены в форме списка и заданы типами (пустой набор, одноэлементный, конечные и бесконечные множества, равные и эквивалентные, универсальные), объединение, пересечение, разность и дополнение чисел. В повседневной жизни часто говорится о коллекции таких объектов, как куча ключей, стая птиц, пачка карточек и т. д. В математике 5 класса и не только, встречаются натуральные, целые, простые и составные числа.

Можно рассмотреть следующие множества:

  • натуральные числа;
  • буквы алфавита;
  • первичные коэффициенты;
  • треугольники с разными значениями сторон.

Видно, что эти указанные примеры представляют собой четко определенные множества объектов. Рассмотрим еще несколько примеров:

  • пять самых известных ученых мира;
  • семь красивых девушек в обществе;
  • три лучших хирурга.

Эти примеры мощности множества не являются четко определенными коллекциями объектов, потому, что критерий «наиболее известных», «самых красивых», «лучших» варьируется от человека к человеку.

Мощность множества примеры

Наборы

Это значение представляет собой четко определенное количество различных объектов. Предположив, что:

  • набор слов является синонимом, агрегатом, классом и содержит элементы;
  • объекты, члены являются равными по значению терминами;
  • наборы обычно обозначаются прописными буквами A, B, C;
  • элементы набора представлены маленькими буквами a, b, c.
Читайте также:  Максимальное кпд когда мощность равна активной

Если «a» — элемент множества A, то говорится, что «a» принадлежит A. Обозначим фразу «принадлежит» греческим символом «∈» (epsilon). Таким образом, выходит, что a ∈ A. Если ‘b’ — элемент, который не принадлежит A, это представляется как b ∉ A. Некоторые важные наборы, используемые в математике 5 класса, представляют, используя три следующих метода:

  • заявки;
  • реестров или табличные;
  • правило создания построения.

При детальном рассмотрении форма заявления основана на следующем. В этом случае задано четкое описание элементов множества. Все они заключены в фигурные скобки. Например:

  • множество нечетных чисел, меньших 7 — записывается как <меньше 7>;
  • набор чисел больше 30 и меньше 55;
  • количество учеников класса, вес которых больше, чем учителя.

В форме реестра (табличной) элементы набора перечислены в паре скобок <> и разделены запятыми. Например:

  1. Пусть N обозначает множество первых пяти натуральных чисел. Следовательно, N = → форма реестра
  2. Набор всех гласных английского алфавита. Следовательно, V = → форма реестра
  3. Множество всех нечетных чисел меньше 9. Следовательно, X = <1, 3, 5, 7>→ форма реестра
  4. Набор всех букв в слове «Математика». Следовательно, Z = → Форма реестра
  5. W — это набор последних четырех месяцев года. Следовательно, W = <сентябрь, октябрь, ноябрь, декабрь>→ реестр.

Стоит отметить, что порядок, в котором перечислены элементы, не имеет значения, но они не должны повторяться. Установленная форма построения, в заданном случае правило, формула или оператор записываются в пару скобок, чтобы набор был корректно определен. В форме set builder все элементы должны обладать одним свойством, чтобы стать членом рассматриваемого значения.

В этой форме представления набора элемент множества описывается с помощью символа «x» или любой другой переменной, за которой следует двоеточие («:» или «|» используется для обозначения). Например, пусть P — множество счетных чисел, большее 12. P в форме set-builder написано, как — <счетное число и больше 12>. Это будет читаться определенным образом. То есть, «P – множество элементов x, такое, что x является счетным числом и больше 12».

Решенный пример с использованием трех методов представления набора: количество целых чисел, лежащих между -2 и 3. Ниже приведены примеры различных типов наборов:

  1. Пустой или нулевой набор, который не содержит какого-либо элемента и обозначается символом ∅ и считывается как phi. В форме списка ∅ имеет написание <>. Пустым является конечное множество, так как число элементов 0. Например, набор целых значений меньше 0.
  2. Очевидно, что их не должно быть 15 декабря, 2017

Источник

Мощность бесконечных множеств

В общем случае, справедливом и для бесконечных множеств, множества A и B является равномощных, или имеют одинаковую мощность, если можно установить взаимно однозначное соответствие между элементами этих множеств, т.е. если существует биекции f: AB. Равномощных множества обозначаются как A

Отношение ривнопотужности есть рефлексивным, симметричным и транзитивным, то есть отношением эквивалентности.

Для бесконечных множеств мощность множества может совпадать с мощностью ее собственной подмножества.

Множество натуральных чисел N равномощных множестве S = <1,4,9,16, . >, состоящая из квадратов натуральных чисел. Необходима биекции устанавливается по закону (n, n 2), n ∈ N, n 2 ∈ S.

Множество Z всех целых чисел равномощных множестве P всех четных чисел. Здесь взаимно однозначное соответствие устанавливается следующим образом: (n, 2n), n ∈ Z, 2n ∈ P.

Числа алеф

Мощность множества натуральных чисел N обозначается символом (Алеф-нуль). Последующие кардинальные числа в порядке возрастания обозначают .

Зличеннисть и конечность множеств

Множество A называется счетное или счетное-бесконечной, если | A |

| N |. В этом случае говорят, что элементы такого множества можно занумеровать. Счетное есть множества целых Z, натуральных N и рациональных Q чисел.

Множество, есть конечная, или Счетное, называется не более чем счетное.

Бесконечная подмножество счетное множества является Счетное. Также бесконечное множество содержит счетное подмножество.

Для бесчисленных множеств, их мощность . То есть, Счетное множество в некотором смысле является «маленькой» из бесконечных множеств. Бесчисленными есть множества действительных R и комплексных C чисел.

Мощность континуума

О множествах, равномощных множестве действительных чисел [или действительных чисел из интервала (0, 1)] говорят, что они имеют мощность континуума, и мощность таких множеств обозначается символом c. Континуум-гипотеза утверждает, что с = .

Свойства

  • Две конечные множества равномощных тогда и только тогда, когда они состоят из одинакового числа элементов. То есть для конечного множества понятие мощности совпадает с привычным понятием количества.
  • Для бесконечных множеств мощность может совпадать с мощностью своей собственной подмножества, например .
    • Более того, множество бесконечное тогда и только тогда, когда она содержит равномощных собственную (т.е. такую, которая не совпадает с основной множеством) подмножество.
  • Теорема Кантора гарантирует существование мощной множества для любой данной: Множество всех подмножеств множества A имеет большую мощность, чем A, или .
  • С помощью кантора квадрата можно доказать следующее полезное утверждение: Декартово произведение бесконечного множества A с самим собой равномощных A.
  • Мощность декартова произведения:
  • Формула включения-выключения в простейшем виде:

6.Числовые множества.Комплексные числа:

-натуральные, целые и рациональные числа;

-алгебраические операции с комплексными числами;

-модуль и аргумент комплексного числа;

-геометрическое представление комплексных чисел;

-понятие о функции комплексного переменного.

Числовые множества. Множество комплексных чисел.

Дата добавления: 2018-04-04 ; просмотров: 517 ; Мы поможем в написании вашей работы!

Источник

Мощность множества

Два множества называются равномощными, если между их элементами можно установить взаимно-однозначное соответствие.

Два конечных множества равномощны, если они содержат одинаковое число элементов. Количество элементов множества называется его кардинальным числом (мощностью) и обозначается либо card A, либо .

Теорема: Для любых конечных множеств А и В

Доказательство: Пусть

1)

2) Пусть ;

Бесконечное множество называется счетным, если между его элементами и числами натурального ряда можно установить взаимно-однозначное соответствие.

Любые два счетных множества являются равномощными.

Если множество не является счетным, то говорят, что оно несчетное.

Счетное множество является минимальным бесконечным множеством.

Теорема: Если множества A и B счетны, то их декартово произведение тоже счетно.

Доказательство:;

a1 a2 a2 ¼ an ¼
b1
b2
b2
bm

Следствие: Декартово произведение любого конечного числа множеств счетно.

Теорема: Множество точек отрезка счетным не является.

Доказательство:

Любое число, принадлежащее отрезку можно единственным образом представить в виде бесконечной дроби вида

Предположим, что мы сумели перенумеровать все числа отрезка .

Составляем новое число: Это число не принадлежит нашему списку, т.к. отличается от i-го числа в i-м знаке Þ множество точек отрезка счетным не является.

Мощность множества действительных чисел отрезка [0, 1], называемая мощностью континуума, превы­шает мощность счетного множества.

Можно указать множества, мощность которых больше мощности континуума. Но множества с наибольшей мощностью не существует (подобно тому, как не существует наибольшего натурального чис­ла). Это является следствием того, что мощность множества М всег­да строго меньше мощности множества P(М) всех его подмножеств. Иначе говоря, какой бы мощности не было данное множество, всегда можно образовать множество его подмножеств, которое будет иметь большую мощность. Так, Р(N), где N — множество на­туральных чисел, несчетно: его мощность равна мощности конти­нуума.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник