Меню

Что такое регуляторы угловой скорости



Что такое регулятор оборотов?

Определение

Регуляторы оборотов — в англоязычном сообществе называются — Electric Speed Controller (электронный контроллер скорости) или сокращенно — ESC. Основная задача ESC – передача энергии от аккумулятора к бесколлекторному мотору. Потребность в их применении возникла вследствие некоторых особенностей БК — мотора. Вкратце говоря, аккумулятор отдает постоянный ток, а бесколлекторный мотор принимает трехфазный переменный ток.

Walkera F210 лучи дрона

Принцип работы

Связь с остальными компонентами мультикоптера.

На вход ESC подается напряжение с аккумулятора и сигналы от полетного контроллера, а на выход регулятор отдает управляющее напряжение для привода. Соответственно регулятор должен обеспечивать:

  1. Совместимость с полетным контроллером.
  2. Максимальный ток для мотора (рассчитывается из спецификаций мотора и пропеллера) плюс 20 – 30%.
  3. Потребление тока меньше, чем ток, отдаваемый аккумулятором поделенный на количество ESC.

схема подключения регуляторов напряжения к БК моторам

*Простейшая схема подключения.

Какие регуляторы бывают?

BEC и UBEC

Дополнительно к основной функции, регуляторы оборотов могут так же передавать питание к другим узлам дрона: полетному контроллеру, сервоприводам и так далее. Это достигается внедрением в регулятор блока исключения батареи — Battery Eliminator Circuit (далее как — BEC).

Использование BEC значительно упрощает конструкцию дрона, однако такая схема обладает рядом минусов. Блок исключения батареи может перегреваться при больших перепадах напряжения и больших нагрузках. К тому же регуляторы оборотов с BEC, как правило, стоят дороже, чем регуляторы без блока.

Согласитесь, логичнее и дешевле было бы сделать отдельно ESC и отдельно один BEC. Такое решение есть и называется оно универсальный блок исключения батареи (Universal Battery Eliminator Circuit, далее как — UBEC).

Преимущества UBEC

Регуляторы UBEC

UBEC — подключается напрямую к аккумулятору и питает нужный узел дрона. Преимущества такого подхода весьма существенны:

  1. Регуляторы оборотов будут меньше перегреваться, поскольку из них будет исключен BEC
  2. UBEC обладают большим коэффициентом полезного действия
  3. Следовательно из предыдущих двух пунктов UBEC способен отдавать больший ток с меньшим риском
  4. Отсутствие переплаты за несколько лишних BEC, располагающихся в ESС. Для некоторых полетных контроллеров крайне не рекомендуется подключать больше одного ESC BEC
  5. Меньший вес регуляторов

Виды BEC и их преимущества

BEC бывают двух видов: линейные (LBEC) и импульсные (SBEC).

  1. Линейный преобразует энергию в тепло, а при перегреве отключается. Что может приводить к неприятным результатам: в лучшем случае коптер не сможет взлететь, а в худшем — неконтролируемое падение. В связи с чем стал применяться в сборке с сервоприводами, которые в свою очередь не потребляют много тока, не позволяя блоку перегреваться.
  2. Импульсный регулирует напряжение быстрым включением и выключением питания, такой подход исключил перегрев, повысил выходную мощность, и позволил достигать КПД 90%, а также импульсные BEC выигрывают у линейных в весе. Возникающие в цепи помехи, которые отрицательно сказываются на работе радио аппаратуры, исключаются добавлением LC — фильтра.
Читайте также:  Замена реле регулятор ваз 2107 инжектор

Учитывая то, что многие производители устанавливают на свои UBECLC фильтры (а, если фильтра все-таки нет, то его можно дешево купить и легко установить), профессионалы используют в своих коптерах именно регуляторы SBEC.

Программное обеспечение ESC

Поскольку регулятор оборотов выполняет некоторые преобразования с высокой частотой и может быть настроен на различные режимы работы для него пишут отдельный софт, называемый прошивкой. Это позволяет исправлять прошлые ошибки в алгоритмах управления, создавать более совершенные прошивки (и тем самым, например, уменьшать расходы аккумулятора на среднем газу) и производить гибкие настройки. В коптерах известных компаний типа DJI смена ПО регулятора происходит автоматически при помощи полетного контроллера.

Внимание! Перезапись ПО для регуляторов скорости может повлечь за собой поломки дрона различного характера, а так же снятие с гарантийного обслуживания! Помните, что вы делаете это на свой страх и риск!

Как сменить ПО?

Сменить программное обеспечение регулятора можно несколькими способами:

  1. Используя специальную плату управления
  2. Используя полетный контроллер
  3. Используя ASP программатор

Третий вариант проще и в настоящее время активно внедряется в новые модели.

Программатор ASP

Выбор регулятора оборотов

Исходя из всего вышеперечисленного, можно выделить особые критерии выбора регулятора оборотов для дрона:

  1. Совместимость с полетным контроллером. Полетный контроллер должен поддерживать BEC и прошивку ESC.
  2. Совместимость со спецификациями мотора и аккумулятора.
  3. Наличие или отсутствие BEС и его тип (LBEC или SBEC).
  4. Теплоотвод и герметичность.

Источник

Тема 4. Регуляторы скорости

date image2015-09-06
views image2706

facebook icon vkontakte icon twitter icon odnoklasniki icon

Регуляторы скорости – механизмы управляющие частотой вращения посредством изменения потока энергии, подводимой к механизму. В приборах чаще всего используют регуляторы, воздействующие на расход энергии путем изменения сил сопротивления.

В зависимости от продолжительности непрерывного действия различают:

– тормозные регуляторы, действующие непрерывно;

– спусковые регуляторы, осуществляющие прерывистое действие.

В зависимости от способа рассеянья энергии тормозные регуляторы различают:

– с трением между твердыми телами;

– с трением о среду (жидкость, воздух);

– торможением вихревыми токами (магнитоиндукционные).

Читайте также:  Мото реле регулятор схема подключения

Тормозные регуляторы с трением вращающегося элемента регулятора о твердое тело получили наибольшее распространение, так как позволяют получить большой тормозной момент при малых габаритах регулятора и сравнительно небольшой частоте вращения его оси.

Центробежные тормозные регуляторы –с трением между твердыми телами имеют две конструктивные разновидности: регуляторы радиального действия и регуляторы осевого действия.

В первых, взаимное давление тел, трущихся друг о друга под действием центробежной силы, направлено по радиусу перпендикулярно оси вращения (рис. 4.1).

Рис. 4.1 Центробежный тормознойрегулятор радиального действия

К буртику 1, на оси 2 регулятора прикреплены пружины 3 с тормозными грузиками 4. При вращении оси пружины изгибаются, грузики расходятся и при критической угловой скорости прикасаются к поверхности неподвижного цилиндрического барабана 5. При дальнейшем увеличении угловой скорости грузики центробежной силой F=Fкр прижимаются к барабану, трутся о его поверхность и на оси регулятора возникает момент Мрег, пропорциональный квадрату угловой скорости ωрег оси:

где Fкр – центробежная сила грузика;

k – жесткость пружины;

Δ – зазор между грузиком и барабаном при неподвижной оси регулятора;

f – коэффициент трения между грузиками и поверхностью барабана;

т – масса грузика;

ρ – расстояние от оси до центра тяжести грузика, когда он касается барабана;

r – радиус барабана;

z – число грузиков.

Рис. 4.2 Колодочные тормозныерегуляторы радиально действия

Колодочные тормозные регуляторы радиального действия
(рис. 4.2), включают в себя тормозные колодки 1, которые могут поворачиваться на осях 2 диска 3, закрепленного на оси 4 регулятора. Пружины 5 стягивают колодки и прижимают их к упорам 6. При вращении оси регулятора с угловой скоростью, близкой к критической, центробежная сила F преодолевает начальную силу натяжения Fn пружин и колодки начинают расходиться и при критической угловой скорости они касаются поверхности барабана. При угловой скорости больше критической на оси регулятора появляется тормозной момент.

Колодочные тормозные регуляторы радиального действия имеют большие радиальные и малые осевые размеры. При этом они обеспечивают большие тормозные моменты при меньших частотах вращения оси регулятора

Центробежные тормозные регуляторы осевого действия (рис. 4.3) – у них силы давления направлены вдоль оси вращения регулятора. Они имеют два основных варианта конструктивных схем: с тормозным диском и тормозными рычагами.

Рис. 4.3 Центробежные тормозные регуляторы осевого действия

К втулке 7, закрепленной на оси регулятора, и к подвижному тормозному диску 1, который может скользить на оси, шарнирно прикреплены тяги 6 с грузиками т. Пружина 4, натяжение которой может устанавливаться гайкой 5, прижимает диск 1 к упору 3на оси регулятора. При вращении оси центробежная сила F каждого грузика через тяги передается диску, преодолевая силу Fn начального натяжения пружины и сжимая ее дополнительно на величину Δ. Диск при критической частоте вращения оси перемещается к тормозному упору 2на корпусе регулятора. При частоте вращения, большей критической, диск прижимается к тормозному упору и на оси регулятора возникает тормозной момент

Читайте также:  Регулятор давления топлива bosch для ваз

Регуляторы с воздушным сопротивлением. Ось такого регулятора имеет пластинки — крылья (рис. 4.4), при вращении оси на ней возникает тормозной момент Мрег, зависящий от угловой скорости ωрег.

Рис. 4.4 Регулятор с воздушным сопротивлением

В случае прямоугольного крыла тормозной момент определяется:

Коэффициент сопротивления k при нормальной плотности воздуха весьма мал. (k= 1,4*10 -12 Нс 2 /мм 4 ). Тормозной момент таких регуляторов невелик. Вместе с тем к достоинствам можно отнести простоту устройства, высокую надежность и стабильность в работе. Изменения их характеристики обусловливаются изменением плотности воздуха.

Используя конструкции с переменным размахом крыльев, можно получить увеличение крутизны характеристики в рабочем диапазоне изменения моментов. Иногда на плоскости лопастей выполняют отверстия переменного сечения. Если лопасти вращаются в жидкости, то получаются регуляторы с трением о жидкость.

Спусковые регуляторы угловой скорости – особенность их работы, в отличии от других регуляторов, состоит в том, что эти регуляторы стабилизируют лишь среднюю угловую скорость.

а) б)
Рис. 4.5 Спусковой регулятор

Различают спусковые регуляторы двух типов:

– с собственными колебаниями (рис.4.5а);

– без собственных колебаний (рис.4.5б).

Мгновенная же угловая скорость оси регулятора периодически изменяется в широких пределах – от наибольшего значения до нуля. Поэтому спусковые регуляторы не применяют там, где нужна плавность движения. Спусковые регуляторы с собственными колебаниями обеспечивают высокую точность средней угловой скорости, надежны в работе и имеют стабильные характеристики. Спусковые регуляторы без собственных колебаний применяют в механизмах, где не требуется высокая точность в отношении скорости вращения рабочей оси.

Рис. 9 Магнитоиндук­ционный регулятор

Магнитоиндукционные регуляторы – состоят из металлического диска 1 вращающегося в поле постоянного магнита 2. при этом в диске наводятся вихревые токи, создающие вторичное магнитное поле. Взаимодействие вторичного и первичного поля через диск приводит к возникновению тормозного момента. Регуляторам этого типа свойственна строгая линейная зависимость тормозного момента от частоты вращения.

Момент регулирования регуляторов этого типа может быть найден: .

Источник