Меню

Что такое расход реактивной мощности



Активная и реактивная мощность. За что платим и работа

Активная и реактивная мощность — потребители электрической энергии на то и потребители, чтобы эту энергию потреблять. Потребителя интересует та энергия, потребление которой идет ему на пользу, эту энергию можно назвать полезной, но в электротехнике ее принято называть активной. Это энергия, которая идет на нагрев помещений, готовку пищи, выработку холода, и превращаемая в механическую энергию (работа электродрелей, перфораторов, электронасосов и пр.).

Кроме активной электроэнергии существует еще и реактивная. Это та часть полной энергии, которая не расходуется на полезную работу. Как понятно из вышесказанного, полная мощность – это активная и реактивная мощность в целом.

Активная и реактивная мощность

В понятиях активная и реактивная мощность сталкиваются противоречивые интересы потребителей электрической энергии и ее поставщиков. Потребителю выгодно платить только за потребленную им полезную электроэнергию, поставщику выгодно получать оплату за сумму активной и реактивной электроэнергии. Можно ли совместить эти кажущиеся противоречивыми требования? Да, если свести количество реактивной электроэнергии к нулю.

Активная мощность

Существуют потребители электроэнергии, у которых полная и активная мощности совпадают. Это потребители, у которых нагрузка представлена активными сопротивлениями (резисторами). Среди бытовых электроприборов примерами подобной нагрузки являются лампы накаливания, электроплиты, жарочные шкафы и духовки, обогреватели, утюги, паяльники и пр.

Указанная у этих приборов в паспорте, одновременно является активная и реактивная мощность . Это тот случай, когда мощность нагрузки можно определить по известной из школьного курса физики формуле, перемножив ток нагрузки на напряжение в сети. Ток измеряется в амперах (А), напряжение в вольтах (В), мощность в ваттах (Вт). Конфорка электрической плиты в сети с напряжением 220 В при токе в 4,5 А потребляет мощность 4,5 х 220 = 990 (Вт).

Реактивная мощность

Иногда, проходя по улице, можно увидеть, что стекла балконов покрыты изнутри блестящей тонкой пленкой. Эта пленка изъята из бракованных электрических конденсаторов, устанавливаемых с определенными целями на питающих мощных потребителей электрической энергии распределительных подстанциях. Конденсатор – типичный потребитель реактивной мощности. В отличие от потребителей активной мощности, где главным элементом конструкции является некий проводящий электричество материал (вольфрамовый проводник в лампах накаливания, нихромовая спираль в электроплитке и т.п.). В конденсаторе главный элемент – не проводящий электрический ток диэлектрик (тонкая полимерная пленка или пропитанная маслом бумага).

Реактивная емкостная мощность

Красивые блестящие пленки, что вы видели на балконе – это обкладки конденсатора из токопроводящего тонкого материала. Конденсатор замечателен тем, что он может накапливать электрическую энергию, а затем отдавать ее – своеобразный такой аккумулятор. Если включить конденсатор в сеть постоянного тока, он зарядится кратковременным импульсом тока, а затем ток через него протекать не будет. Вернуть конденсатор в исходное состояние можно, отключив его от источника напряжения и подключив к его обкладкам нагрузку. Некоторое время через нагрузку будет течь электрический ток, и идеальный конденсатор отдает в нагрузку ровно столько электрической энергии, сколько он получил при зарядке. Подключенная к выводам конденсатора лампочка может на короткое время вспыхнуть, электрический резистор нагреется, а неосторожного человека может «тряхнуть» или даже убить при достаточном напряжении на выводах и запасенном количестве электричества.

Aktivnaia i reaktivnaia moshchnost kompensator

Интересная картина получается при подключении конденсатора к источнику переменного электрического напряжения. Поскольку у источника переменного напряжения постоянно меняются полярность и мгновенное значение напряжения (в домашней электросети по закону, близкому к синусоидальному). Конденсатор будет непрерывно заряжаться и разряжаться, через него будет непрерывно протекать переменный ток. Но этот ток не будет совпадать по фазе с напряжением источника переменного напряжения, а будет опережать его на 90°, т.е. на четверть периода.

Это приведет к тому, что суммарно половину периода переменного напряжения конденсатор потребляет энергию из сети, а половину периода отдает, при этом суммарная потребляемая активная электрическая мощность равна нулю. Но, поскольку через конденсатор течет значительный ток, который может быть измерен амперметром, принято говорить, что конденсатор – потребитель реактивной электрической мощности.

Вычисляется реактивная мощность как произведение тока на напряжение, но единица измерения уже не ватт, а вольт-ампер реактивный (ВАр). Так, через подключенный к сети 220 В частотой 50 Гц электрический конденсатор емкостью 4 мкФ течет ток порядка 0,3 А. Это означает, что конденсатор потребляет 0,3 х 220 = 66 (ВАр) реактивной мощности – сравнимо с мощностью средней лампы накаливания, но конденсатор, в отличие от лампы, при этом не светится и не нагревается.

Реактивная индуктивная мощность

Если в конденсаторе ток опережает напряжение, то существуют ли потребители, где ток отстает от напряжения? Да, и такие потребители, в отличие от емкостных потребителей, называются индуктивными, оставаясь при этом потребителями реактивной энергии. Типичная индуктивная электрическая нагрузка – катушка с определенным количеством витков хорошо проводящего провода, намотанного на замкнутый сердечник из специального магнитного материала.

Читайте также:  Какая мощность дизеля больше

На практике хорошим приближением чисто индуктивной нагрузки является работающий без нагрузки трансформатор (или стабилизатор напряжения с автотрансформатором). Хорошо сконструированный трансформатор на холостом ходу потребляет очень мало активной мощности, потребляя мощность в основном реактивную.

Реальные потребители электрической энергии и полная электрическая мощность

Из рассмотрения особенностей емкостной и индуктивной нагрузки возникает интересный вопрос – что произойдет, если емкостную и индуктивную нагрузку включить одновременно и параллельно. Ввиду их противоположной реакции на приложенное напряжение, эти две реакции начнут компенсировать друг друга. Суммарная нагрузка окажется только емкостной или индуктивной, и в некотором идеальном случае удастся добиться полной компенсации. Выглядеть это будет парадоксально – подключенные амперметры зафиксируют значительные (и равные!) токи через конденсатор и катушку индуктивности, и полное отсутствие тока в объединяющих их общей цепи. Описанная картина несколько нарушается лишь тем, что не существует идеальных конденсаторов и катушек индуктивности, но подобная идеализация помогает понять суть происходящих процессов.

Вернемся к реальным потребителям электрической энергии. В быту мы пользуемся в основном потребителями чисто активной мощности (примеры приведены выше), и смешанной активно-индуктивной. Это электродрели, перфораторы, электродвигатели холодильников, стиральных машин и прочей бытовой техники. Также к ним относятся электрические трансформаторы источников питания бытовой радиоэлектронной аппаратуры и стабилизаторов напряжения. В случае подобной смешанной нагрузки, помимо активной (полезной) мощности, нагрузка потребляет еще и реактивную мощность, в итоге полная мощность отказывается больше активной мощности. Полная мощность измеряется в вольт-амперах (ВА), и всегда представляет собой произведение тока в нагрузке на напряжение на нагрузке.

Таинственный «косинус фи»

Aktivnaia i reaktivnaia moshchnost priborОтношение активной мощности к полной называется в электротехнике «косинусом фи». Обозначается cos φ. Это отношение называется также и коэффициентом мощности. Нетрудно видеть, что для случая чисто активной нагрузки, где полная мощность совпадает с активной, cos φ = 1. Для случаев чисто емкостной или индуктивной нагрузок, где нулю равна активная мощность, cos φ = 0.

В случае смешанной нагрузки значение коэффициента мощности заключается в пределах от 0 до 1. Для бытовой техники обычно в диапазоне 0,5-0,9. В среднем можно считать его равным 0,7, более точное значение указывается в паспорте электроприбора.

За что платим?

И, наконец, самый интересный вопрос – за какой вид энергии платит потребитель. Исходя из того, что реактивная составляющая суммарной энергии не приносит потребителю никакой пользы, при этом долю периода реактивная энергия потребляется, а долю отдается, платить за реактивную мощность незачем. Но бес, как известно, кроется в деталях. Поскольку смешанная нагрузка увеличивает ток в сети, возникают проблемы на электростанциях, где электроэнергия вырабатывается синхронными генераторами, а именно: индуктивная нагрузка «развозбуждает» генератор, и приведение его в прежнее состояние обходится в затраты уже реальной активной мощности на его «довозбуждение».

Таким образом, заставить потребителя платить за потребляемую реактивную индуктивную мощность вполне справедливо. Это побуждает потребителя компенсировать реактивную составляющую своей нагрузки, а, поскольку эта составляющая в основном индуктивная, компенсация заключается в подключении конденсаторов наперед рассчитанной емкости.

Потребитель находит возможность платить меньше

Если потребителем оплачивается отдельно потребляемая активная и реактивная мощность. Он готов идти на дополнительные затраты и устанавливать на своем предприятии батареи конденсаторов, включаемые строго по графику в зависимости от средней статистики потребления электроэнергии по часам суток.

Существует также возможность установки на предприятии специальных устройств (компенсаторов реактивной мощности), подключающих конденсаторы автоматически в зависимости от величины и характера потребляемой в данный момент мощности. Эти компенсаторы позволяют поднять значение коэффициента мощности с 0,6 до 0,97, т.е. практически до единицы.

Принято также, что если соотношение потребленной реактивной энергии и общей не превышает 0,15, то корпоративный потребитель от оплаты за реактивную энергию освобождается.

Что же касается индивидуальных потребителей, то, ввиду сравнительно невысокой потребляемой ими мощности, разделять счета на оплату потребляемой электроэнергии на активную и реактивную не принято. Бытовые однофазные счетчики электрической энергии учитывают лишь активную мощность электрической нагрузки, за нее и выставляется счет на оплату. Т.е. в настоящее время даже не существует технической возможности выставить индивидуальному потребителю счет за потребленную реактивную мощность.

Особых стимулов компенсировать индуктивную составляющую нагрузки у потребителя нет, да это и сложно осуществить технически. Постоянно подключенные конденсаторы при отключении индуктивной нагрузки будут бесполезно нагружать подводящую электропроводку. За электросчетчиком (перед счетчиком тоже, но за то потребитель не платит), что вызовет потребление активной мощности с соответствующим увеличением счета на оплату, а автоматические компенсаторы дороги и вряд ли оправдают затраты на их приобретение.

Другое дело, что производитель иногда устанавливает компенсационные конденсаторы на входе потребителей с индуктивной составляющей нагрузки. Эти конденсаторы, при правильном их подборе, несколько снизят потери энергии в подводящих проводах, при этом несколько повысив напряжение на подключенном электроприборе за счет уменьшения падения напряжения на подводящих проводах.

Читайте также:  Wifi роутер настройка мощности сигнала

Но, что самое главное, компенсация реактивной энергии у каждого потребителя, от квартиры до огромного предприятия, снизит токи во всех линиях электропитания, от электростанции до квартирного щитка. За счет реактивной составляющей полного тока, что уменьшит потери энергии в линиях и повысит коэффициент полезного действия электросистем.

Источник

Реактивная мощность — еще раз коротко о главном

Все чаще в различных изданиях и СМИ, в рамках информации о реализации Федерального закона от 23 ноября 2009 г. N 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности…» встречается информация о борьбе с реактивной мощностью в сетевых компаниях и на промышленных предприятиях. Что же это за такое зло, что для борьбы с ним сетевыми компаниями тратятся сотни миллионов рублей, разрабатываются специальные долгосрочные целевые программы мероприятий по управлению реактивной мощностью в электрических сетях, ведутся агитации среди крупных потребителей электроэнергии на установку устройств по компенсации реактивной мощности. Так ли она важна и необходима эта компенсация?

Зачастую, многие потребители подсознательно полагают, что генерирующие компании поставляют два типа электрической энергии, так как оплачивают счета за потребленную активную и реактивную мощность, составляющие полной мощности выдаваемой генерирующими подстанциями. Хотя на самом деле понятие реактивной мощности хоть и общепринято и употребляемо, но не совсем корректно, так как физически реактивной мощности (именно в классическом понимании мощности, как отношения работы ко времени) не существует, так как никакой работы она не совершает.

Активная мощность — та часть электрической энергии, которая идет на совершение полезной работы и в процессе потребления преобразуется в другие типы энергии, например тепловую, механическую или световую.

Название реактивная мощность, по аналогии с реактивным сопротивлением, обусловлено способностью индуктивных и емкостных элементов накапливать и отдавать обратно в сеть, запасенную магнитную или электрическую энергию, и проявлять кажущиеся сопротивление только в цепях переменного тока. В то время как активное сопротивление зависит только от конкретного материала проводника.

Согласно общепринятому утверждению, под условным термином «реактивная мощность» понимают вторую составляющую полной мощности в сетях переменного тока, характеризующую интенсивность обмена/циркуляции электрической энергии между источником и подключенной к нему реактивной нагрузки (элементов индуктивности и/или конденсаторов), которая необходима только для расчетов определяющих влияние реактивных элементов на сеть.

Индуктивные (катушки в трансформаторах, дросселях, индукционных печах, двигателях и пр.) и емкостные (конденсаторные батареи) элементы практически не расходуют электроэнергии (без учета магнитного рассеивания и утечек в конденсаторах), хотя она и используется для создания электромагнитных и электрических/электростатических полей, но в процессе разряда возвращается обратно в сеть. Так как энергия циркулирует, то соответственно есть изменения тока и напряжения, которые можно посчитать в виде условной реактивной мощности используемой только для совершения данных преобразований.

Для электрических цепей в зависимости от подключаемого оборудования можно выделить три ситуации:

  • если оборудование имеет практически чистую активную (резистивную) нагрузку, например, лампы накаливания, утюги, электроплиты и др. приборы, то протекающий через цепь переменный ток будет синфазен напряжению (см. рис. ниже). Т.е. ток и напряжение будут совпадать по фазе, угол между напряжением и током ϕ =0. Для данного случая мощность является полностью активной и определяется как произведение тока на напряжение. Мощность, переданная источником, полностью тратится на совершение работы.

Рис. Диаграмма напряжения, тока и мощности для активной (резистивной) нагрузки.

  • в оборудовании преобладает только индуктивная нагрузка. В данном случае имеется ситуация когда ток отстает от напряжения на уголϕ (см. рис. ниже), это связано со свойственной индуктивности инерционностью, задерживать появление тока. Для идеального случая, когда ϕ = 90° (в некоторой степени подходит для асинхронных двигателей и трансформаторов, работающих на холостом ходу ϕ > 80°), как видно из рисунка, в первой четверти периода происходит потребление энергии для создания магнитного поля, а во второй четверти его обратная генерация в сеть, т.е. происходит обмен мощностью.

Рис. Диаграмма напряжения, тока и мощности для индуктивной нагрузки.

  • третья ситуация аналогична предыдущей, но в данном случае для оборудования с только емкостной нагрузкой, проходящий через него ток будет опережать напряжение (см. рис. ниже).

Рис. Диаграмма напряжения, тока и мощности для емкостной нагрузки.

В реальности нагрузка имеет более-менее выраженную индуктивно-емкостную нагрузку (см. рис. ниже), зависящую от параметров самого оборудования. Из-за смещения фаз напряжения и тока уменьшается величина активной мощности, используемой для совершения полезной работы в системах с индуктивной нагрузкой, так как часть электрической энергии (реактивной мощности) будет циркулировать в энергосистеме и тратиться только на создание магнитных полей, не совершая ничего полезного, что в свою очередь приводит к увеличению тока необходимого для полноценной работы оборудования. В то же время, как известно, все проводники обладают активным сопротивлением, и циркуляция больших токов в системе будет приводить к их нагреву (величина нагрева, а соответственно и потерь, как известно, пропорциональна квадрату тока), а соответственно и к потерям электрической энергии.

Читайте также:  Сортировочные станции россии по мощности

Рис. Диаграмма напряжения, тока и мощности для индуктивно-емкостной нагрузки.

Для расчетов полной мощности применяется формула,

где, P — активная мощность, определяется по формуле,

Q — реактивная мощность, определяется по формуле,

U — напряжение, I — сила тока, ϕ — угол между напряжением и током.

Как было сказано выше, перетоки реактивной мощности в сети не выполняют полезной работы, при этом загружают источник, силовые линии, и все коммутационное оборудование, установленное между генерирующими станциями и конечными потребителями, а также нагревая кабели и линии высоковольтных передач, снижая тем самым их пропускную способность (с увеличением температуры растет сопротивление проводов) и создавая бесполезное тепло. Зачем же греть окружающую среду и еще платить за это деньги?

Помимо этого снижение пропускной способности и увеличение потерь из-за нагрева проводов ведет к значительным отклонениям напряжения, нормируемым в соответствии с ГОСТ 13109-97, что в конечном итоге негативно сказывается на:

  • уменьшение вращающего момента и частоты вращения асинхронных двигателей, что в конечном итоге, при соответствующей нагрузке может привести к его остановке. Одновременно с уменьшением напряжения (снижения реактивной мощности на 2-3 % за каждый процент напряжения) пропорционально вырастит ток двигателя, что может привести к перегреву изоляции обмоток и уменьшения его срока службы.
  • уменьшение световой отдачи осветительных приборов, что скажется на производительности труда рабочих. Для люминесцентных ламп снижения/повышения напряжения на 10% приводят к уменьшению их срока службы на 20-25%. Помимо этого, учитывая то, что многие производители компактных люминесцентных ламп не используют в ЭПРА корректоры коэффициента мощности (ККФ), увеличение питающего напряжения ведет к увеличению потребления реактивной мощности. Без ККФ значение коэффициента мощности находиться на уровне 0.5, что делает проблему компенсации также актуальной для индивидуальных потребителей электроэнергии со значительным количеством данных ламп.
  • качество работы и длительность эксплуатации различной бытовой электроаппаратуры.
  • на качество работы сварочного оборудования, так при отклонениях напряжения до 15%, на машинах для точечной сварки будет гарантированно получаться брак.
  • качество и устойчивость работы энергетических систем, возможно появление такой ситуации как «лавина напряжении», обусловленная нарастающим дефицитом реактивной мощности.

Исходя из всего вышесказанного, решение проблем по компенсации реактивной мощности занимают одно из важнейших мест среди мероприятий направленных на повышение эффективности распределения, передачи и потребления электроэнергии. Ведь от их результатов зависит качественное электроснабжение, а также экономия средств по оплате за потребленную электроэнергию (активную и реактивную) и материальных ресурсов. Поэтому в зависимости от конкретной ситуации, все вопросы по компенсации реактивной мощности необходимо решать с учетом современных разработок и решений для данной области.

Основной безразмерной величиной, характеризующей преобладание реактивной составляющей в оборудование, является коэффициент мощности, который численно равен косинусу сдвига тока относительно приложенного к нагрузке напряжения или отношению потребляемой оборудованием активной мощности (Р), к полной (S).

Таким образом, многие предприятия и генерирующие/распределительные сетевые компании стремятся увеличить cos(ϕ) до 1, чтобы в значительной мере снизить величину потребляемой реактивной мощности. Как было приведено выше, в быту и промышленности в основном преобладает оборудование с индуктивным характером нагрузки, с отставанием тока от напряжения, поэтому используя устройства с емкостной нагрузкой, удается уменьшить сдвиг между током и напряжением в фазе, а соответственно добиться cos(ϕ), близкого к единице.

Этого можно достичь с минимальными затратами путем использования компенсирующих установок построенных на базе конденсаторов (конденсаторные установки КРМ, АУКРМ, батареи статических конденсаторов), более дорогих синхронных двигателей в режиме перевозбуждения или тиристорных схем с фильтрами, устанавливаемых непосредственно вблизи оборудования с преобладающей реактивной нагрузкой или группами, на распределительных подстанциях предприятия. Так создание электрической энергии с преобладающей емкостной характеристикой с генерирующих синхронными генераторами подстанций, в целом не целесообразно, ввиду тех же самых потерь при передаче и распределении электрической энергии.

В последнее время все более востребованными становятся конденсаторные установки АУКРМ, позволяющие производить более точную коррекцию коэффициента мощности с учетом изменения значений, потребляемой мощности от токов нагрузки, напряжения, времени суток.

При этом при формировании конденсаторной установки желательно обеспечивать максимально малый шаг регулирования, но с использованием минимального количества конденсаторов. В конечном итоге грамотный выбор определенного оборудования для компенсации реактивной мощности определяется на основании технико-экономических расчетов, характера преобладающей в сетях предприятия реактивной нагрузки, что позволит достигнуть положительного экономического эффекта при минимальных сроках окупаемости внедренного оборудования.

Источник