Меню

Что такое амплитуда пульсаций выпрямленного напряжения



Коэффициент пульсации выпрямителя

-отношение амплитуды к- ой гармоники к средневыпрямленному значению напряжения.

Выпрямители служат для преобразования переменного напряжения питающей сети в постоянное. Основными компонентами выпрямителей служат вентили – элементы с явно выраженной нелинейной вольт-амперной характеристикой. В качестве таких элементов используют кремниевые диоды.

Однополупериодный выпрямитель. Простейшим является однополупериодный выпрямитель (рис. 1.1.2). Напряжение и ток нагрузки имеют форму, показанную на рис. 1.1.3. Выходное напряжение меньше входного на величину падения напряжения на открытом диоде.

Среднее значение выпрямленного напряжения:

Здесь – действующее значение входного напряжения. С помощью формулы (1.1.1) по заданному значению напряжения можно найти входное напряжение выпрямителя.

Максимальное обратное напряжение на диоде:

Максимальный ток диода:

Важным параметром выпрямителя является коэффициент пульсаций выпрямленного напряжения, равный отношению максимального и среднего напряжений. Для однополупериодного выпрямителя коэффициент пульсаций

Выпрямленные напряжение и ток в схеме на рис. 1.1.2 имеют большой уровень пульсаций. Поэтому на практике такую схему применяют в маломощных устройствах в тех случаях, когда не требуется высокая степень сглаживания выпрямленного напряжения.

Двухполупериодные выпрямители. Меньший уровень пульсаций выпрямленного напряжения можно получить в двухполупериодных выпрямителях. На рис. 1.1.4 показана схема выпрямителя с выводом от средней точки вторичной обмотки трансформатора.

Во вторичной обмотке трансформатора индуцируются напряжения и , имеющие противоположную полярность. Диоды проводят ток поочередно, каждый в течение полупериода. В положительный полупериод открыт диод VD1, а в отрицательный – диод VD2. Ток в нагрузке имеет одинаковое направление в оба полупериода, поэтому напряжение на нагрузке имеет форму, показанную на рис. 1.1.5. Выходное напряжение меньше входного на величину падения напряжения на диоде.

В двухполупериодном выпрямителе постоянная составляющая тока и напряжения увеличивается вдвое по сравнению с однополупериодной схемой:

; .

Из последней формулы определим действующее значение напряжения вторичной обмотки трансформатора:

Коэффициент пульсаций в данном случае значительно меньше, чем у однополупериодного выпрямителя:

.

Так как ток во вторичной обмотке трансформатора двухполупериодного выпрямителя синусоидальный, а не пульсирующий, он не содержит постоянной составляющей. Тепловые потери при этом уменьшаются, что позволяет уменьшить габариты трансформатора.

Существенным недостатком схемы на рис. 1.1.4 является то, что к запертому диоду приложено обратное напряжение, равное удвоенной амплитуде напряжения одного плеча вторичной обмотки трансформатора:

.

Поэтому необходимо выбирать диоды с большим обратным напряжением. Более рационально используются диоды в мостовом выпрямителе (рис. 1.6).

Эта схема имеет такие же значения среднего напряжения и коэффициента пульсаций, что и схема выпрямителя с выводом от средней точки трансформатора. Ее преимущество в том, что обратное напряжения на диодах в два раза меньше. Кроме того, вторичная обмотка трансформатора содержит вдвое меньше витков, чем вторичная обмотка в схеме на рис. 1.1.4.

Источник

Как уменьшить пульсацию выпрямленного напряжения

Как уменьшить пульсацию выпрямленного напряженияНапряжение, получаемое от выпрямителей, является не постоянным, а пульсирующим. Оно состоит из постоянной и переменной составляющих. Чем больше переменная составляющая по отношению к постоянной, тем больше пульсация и хуже качество выпрямленного напряжения.

Читайте также:  Среднее значение напряжения однополупериодного выпрямителя составляет

Переменная составляющая формируется гармониками. Частоты гармоник определяются равенством

где k – номер гармоники, k = 1, 2, 3, …, m – количество пульсов выпрямляемого напряжения, f – частота напряжения сети.

Качество выпрямленного напряжения оценивается коэффициентом пульсации p , который зависит от среднего значения выпрямленного напряжения и амплитуды основной гармоники в нагрузке.

Порядок гармонических составляющих n = km, содержащихся в кривой выпрямленного напряжения, зависит лишь от числа пульсов и не зависит от конкретной схемы выпрямителя. Гармоники минимальных номеров имеют наибольшую амплитуду.

Действующее значение напряжения гармонической составляющей порядка n зависит от среднего значения выпрямленного напряжения Ud идеального нерегулируемого выпрямителя:

В реальных схемах переход тока с одного диода на другой происходит в течение некоторого конечного промежутка времени, измеряемого долями периода переменного напряжения и называемого углом коммутации . Наличие углов коммутации существенно увеличивает амплитуду гармоник. В результате растут пульсации выпрямленного напряжения .

Переменная составляющая выпрямленного напряжения, состоящая из гармоник низкой и высокой частоты, создает в нагрузке переменный ток, который оказывает мешающее воздействие на другие электронные устройства.

Для уменьшения пульсации выпрямленного напряжения между выходными зажимами выпрямителя и нагрузкой включают сглаживающий фильтр , который значительно ослабляет пульсацию выпрямленного напряжения за счет подавления гармоник.

Основными элементами сглаживающих фильтров являются катушки индуктивности (дроссели) и конденсаторы, а при небольших мощностях и транзисторы.

Работа пассивных фильтров (без транзисторов и других усилителей) основана на зависимости от частоты величины сопротивления реактивных элементов (катушки индуктивности и конденсатора). Реактивные сопротивления катушки индуктивности X l и конденсатора X c : X l = 2πfL, X c = 1/2πfC,

где f – частота тока, протекающего через реактивный элемент, L – индуктивность дросселя, С – eмкость конденсатора.

Из формул для сопротивления реактивных элементов следует, что с увеличением частоты тока сопротивление катушки индуктивности (дросселя) растёт, а конденсатора уменьшается. Для постоянного тока сопротивление конденсатора равно бесконечности, а катушки индуктивности – нулю.

Отмеченная особенность позволяет катушке индуктивности беспрепятственно пропускать постоянную составляющую выпрямленного тока и задерживать гармоники. Причём, чем больше номер гармоники (выше её частота), тем эффективней она задерживается. Конденсатор наоборот полностью задерживает постоянную составляющую тока и пропускает гармоники.

Основным параметром, характеризующим эффективность работы фильтра, является коэффициент сглаживания (фильтрации)

где p1 – коэффициент пульсации на выходе выпрямителя в схеме без фильтра, p2 – коэффициент пульсации на выходе фильтра.

На практике применяются пассивные Г-образные, П-образные и резонансные фильтры. Наиболее широко используются Г-образные и П-образные, схемы которых приведены на рисунке 1

Схемы пассивных сглаживающих Г-образного (a) и П-образного (б) фильтров для уменьшения пульсации выпрямленного напряжения

Рисунок 1. Схемы пассивных сглаживающих Г-образного (a) и П-образного (б) фильтров для уменьшения пульсации выпрямленного напряжения

Исходными данными для расчёта индуктивности дросселя фильтра L и ёмкости конденсатора фильтра C являются коэффициент пульсации выпрямителя, вариант схемного решения, а также требуемый коэффициент пульсации на выходе фильтра.

Читайте также:  Что такое просадка напряжения блока питания компьютера

Расчёт параметров фильтра начинают с определения коэффициента сглаживания. Далее необходимо произвольно выбрать схему фильтра и емкость конденсатора в ней. Ёмкость конденсатора фильтра выбирают из ряда ёмкостей, приведённого ниже.

На практике используют конденсаторы следующих ёмкостей: 50, 100, 200, 500, 1000, 2000, 4000 мкФ. Меньшие значения ёмкостей из этого ряда целесообразно применять при больших рабочих напряжениях, а большие ёмкости – при невысоких напряжениях.

Индуктивность дросселя в Г-образной схеме фильтра можно определить из приближённого выражения

для П-образной схемы –

В формулы ёмкость подставляется в микрофарадах, а результат получается в генри.

Фильтрация пульсаций выпрямленного напряжения

Фильтрация пульсаций выпрямленного напряжения

Источник

Пульсации выпрямленного напряжения

Работа выпрямителя на различную нагрузку

Рассмотренные схемы выпрямителей давали возможность получить на нагрузке выпрямленное, но пульсирующее напряжение. Недопустимо большие пульсации напряжения нарушают нормальный режим работы электронной аппаратуры создают фон на ее выходе, вызывают искажения сигналов, приводят к неустойчивости работы электронного устройства в целом. Поэтому для устранения пульсации выпрямленного напряжения в схему выпрямителя на его выходе включают сглаживающие фильтры .

Прежде чем познакомиться с практическими схемами фильтрации, рассмотрим физические процессы в схеме двухполупериодного выпрямителя для случая, когда последовательно с сопротивлением нагрузки включен дроссель L ( рис. 117, а ), т. е. когда выпрямитель нагружен на индуктивное и активное сопротивления.

Напряжение U R н L , приложенное к цепи R н — L, имеет форму положительных синусоидальных полуволн; форма же тока, протекающего через нагрузку, отличается от формы выпрямленного напряжения. При увеличении напряжения U R н L в индуктивности L возникает э. д. с. самоиндукции e L , которая противодействует увеличению тока.

Она направлена навстречу возрастающему напряжению U R н L и поэтому на графике показана с обратной полярностью.

Рис. 117. Работа двухполупериодного выпрямителя: а —на индуктивность и активное сопротивление; б — на емкость и активное сопротивление.

Как только ток первого вентиля В 1 перестанет возрастать (достигает максимума), э. д. с. самоиндукции становится равной нулю. В следующую часть периода, когда полярность ее изменится, она будет препятствовать уменьшению тока в цепи R н — L, поэтому ток прекращается не в момент а позже, в момент времени t’. В момент времени t’ открывается также вентиль В 2 и ток в нагрузке складывается из возрастающего тока вентиля В 2 и уменьшающегося тока вентиля В 1 , поддерживаемого э. д. с. самоиндукции (последний замыкается теперь через вентиль В 2 , так как вентиль В 1 заперт).

Среднее значение выпрямленного тока уже незначительно отличается от максимального тока через вентиль, причем это отличие будет тем меньше, чем больше индуктивность L. Одновременно уменьшаются и пульсации выпрямленного напряжения . Так, при ωL, — (5÷8) R н пульсации напряжения на нагрузке не превышают 20%.

Читайте также:  Контрольная работа физика 8 класс сила тока напряжение сопротивление с ответами

Обратное напряжение на вентиле равно сумме э. д. с. е II и напряжения на входе цепи R н —L:

U обр.макс 2Е mII ≈πU cр .

В общем случае среднее значение выпрямленного напряжения на нагрузке равно

U ср = U ср.х.х — I ср (R i + r II + r др ),

где U ср.х.х — напряжение на выходе выпрямителя при отключенной нагрузке в режиме холостого хода; I ср (R i + r II + r др ) — напряжение потерь на актив-пых сопротивлениях элементов схемы.

Из последнего равенства следует, что с увеличением тока через нагрузку (при уменьшении R н ) увеличивается наклон внешней характеристики. Однако этот наклон не зависит от индуктивности дросселя, поэтому в выпрямителе с индуктивной нагрузкой целесообразно применять вентили с малым внутренним сопротивлением R i (селеновые или ионные вентили).

На рис. 117, б приведены двухполупериодная схема выпрямителя, нагруженного на параллельно подключенные конденсатор С и сопротивление R н , а также графики, поясняющие работу этой схемы.

Конденсатор дважды за каждый период подзаряжается до напряжения U C.макс поочередно через вентиль В 1 и вентиль В 2 . Когда напряжение на соответствующей половине вторичной обмотки трансформатора становится выше напряжения U С на конденсаторе, он. подзаряжается в промежутки времени t 1 — t 2 , t 3 — t 4 и разряжается на нагрузку в промежутки времени t 2 —t 3 , t 4 — t 5 . При этом ток в нагрузке поддерживается за счет энергии, накопленной в конденсаторе. Вентили в это время заперты. Чем больше сопротивление нагрузки, тем медленнее разряжается конденсатор, тем меньше изменяется (меньше пульсирует) напряжение на нагрузке.

Среднее значение выпрямленного напряжения примерно равно амплитуде напряжения на половине вторичной обмотки трансформатора: обратное напряжение в 2 раза больше (≈2Е mII ), коэффициент пульсации не превышает 15% при С≈8÷10 мкф.

Следует заметить, что ток в нагрузке протекает в течение всего полупериода, в то время как ток через вентиль проходит только лишь часть полупериода, причем максимальное значение этого тока в 3—4 раза больше среднего значения выпрямленного. Поэтому если необходимо получить от выпрямителя ток в 100 ма, то допустимый максимальный ток вентиля должен быть не менее 300 ма.

Наклон внешней характеристики зависит не только от величины внутреннего сопротивления вентиля и вторичной обмотки трансформатора, но и от постоянных времени заряда и разряда конденсатора:

t зар ≈ С(R i +r’ II ); t разр = CR н

Величина выпрямленного напряжения резко зависит от величины тока нагрузки. При R н = ∞, т. е., когда I ср = 0, напряжение на емкости максимально; при уменьшении R н напряжение U ср падает.

Выпрямитель, работающий на емкость, можно рассматривать как источник с большим внутренним сопротивлением. В момент включения схемы имеет место бросок тока, происходит первоначальный заряд конденсатора С, ток в цепи ограничивается только внутренним сопротивлением вентилей, поэтому возникает опасность выхода одного из них из строя.

Источник