Меню

Bta24 600 схема регулятор мощности



Как сделать регулятор мощности на симисторе своими руками: варианты схем

Для управления некоторыми видами бытовых приборов (например, электроинструментом или пылесосом) применяют регулятор мощности на основе симистора. Подробно о принципе работы этого полупроводникового элемента можно узнать из материалов, размещенных на нашем сайте. В данной публикации мы рассмотрим ряд вопросов, связанных с симисторными схемами управления мощностью нагрузки. Как всегда, начнем с теории.

Принцип работы регулятора на симисторе

Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой. Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод. Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.

Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.

Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы. Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов.

Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль. Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной.

Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%

Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%

При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.

Варианты схем регулятора

Приведем несколько примеров схем, позволяющих управлять мощностью нагрузки при помощи симистора, начнем с самой простой.

Схема простого регулятора мощности на симисторе с питанием от 220 В

Рисунок 2. Схема простого регулятора мощности на симисторе с питанием от 220 В

Обозначения:

  • Резисторы: R1- 470 кОм , R2 – 10 кОм,
  • Конденсатор С1 – 0,1 мкФ х 400 В.
  • Диоды: D1 – 1N4007, D2 – любой индикаторный светодиод 2,10-2,40 V 20 мА.
  • Динистор DN1 – DB3.
  • Симистор DN2 – КУ208Г, можно установить более мощный аналог BTA16 600.

При помощи динистора DN1 происходит замыкание цепи D1-C1-DN1, что переводит DN2 в «открытое» положение, в котором он остается до точки нуля (завершение полупериода). Момент открытия определяется временем накопления на конденсаторе порогового заряда, необходимого для переключения DN1 и DN2. Управляет скоростью заряда С1 цепочка R1-R2, от суммарного сопротивления которой зависит момент «открытия» симистора. Соответственно, управление мощностью нагрузки происходит посредством переменного резистора R1.

Несмотря на простоту схемы, она довольно эффективна и может быть использована в качестве диммера для осветительных приборов с нитью накала или регулятора мощности паяльника.

К сожалению, приведенная схема не имеет обратной связи, следовательно, она не подходит в качестве стабилизированного регулятора оборотов коллекторного электродвигателя.

Схема регулятора с обратной связью

Обратная связь необходима для стабилизации оборотов электродвигателя, которые могут изменяться под воздействием нагрузки. Сделать это можно двумя способами:

  1. Установить таходатчик, измеряющий число оборотов. Такой вариант позволяет производить точную регулировку, но при этом увеличивается стоимость реализации решения.
  2. Отслеживать изменения напряжения на электромоторе и, в зависимости от этого, увеличивать или уменьшать «открытый» режим полупроводникового ключа.

Последний вариант значительно проще в реализации, но требует небольшой настройки под мощность используемой электромашины. Ниже приведена схема такого устройства.

Регулятор мощности с обратной связью

Регулятор мощности с обратной связью

Обозначения:

  • Резисторы: R1 – 18 кОм (2 Вт); R2 — 330 кОм; R3 – 180 Ом; R4 и R5– 3,3 кОм; R6 – необходимо подбирать, как это делается будет описано ниже; R7 – 7,5 кОм; R8 – 220 кОм; R9 – 47 кОм; R10 — 100 кОм; R11 – 180 кОм; R12 – 100 кОм; R13 – 22 кОм.
  • Конденсаторы: С1 — 22 мкФ х 50 В; С2 — 15 нФ; С3 – 4,7 мкФ х 50 В; С4 – 150 нФ; С5 — 100 нФ; С6 – 1 мкФ х 50 В..
  • Диоды D1 – 1N4007; D2 – любой индикаторный светодиод на 20 мА.
  • Симистор Т1 – BTA24-800.
  • Микросхема – U2010B.
Читайте также:  Агрегат окрасочный высокого давления мощность 1 квт

Данная схема обеспечивает плавный запуск электрической установки и обеспечивает ее защиту от перегрузки. Допускается три режима работы (выставляются переключателем S1):

  • А – При перегрузке включается светодиод D2, сигнализирующий о перегрузке, после чего двигатель снижает обороты до минимальных. Для выхода из режима необходимо отключить и включить прибор.
  • В — При перегрузке включается светодиод D2, мотор переводится на работу с минимальными оборотами. Для выхода из режима необходимо снять нагрузку с электродвигателя.
  • С – Режим индикации перегрузки.

Настройка схемы сводится к подбору сопротивления R6, оно вычисляется, в зависимости от мощности, электромотора по следующей формуле: . Например, если нам необходимо управлять двигателем мощностью 1500 Вт, то расчет будет следующим: 0,25/ (1500 / 240) = 0,04 Ом.

Для изготовления данного сопротивления лучше всего использовать нихромовую проволоку диаметром 0,80 или1,0 мм. Ниже представлена таблица, позволяющая подобрать сопротивление R6 и R11, в зависимости от мощности двигателя.

Таблица для подбора номиналов сопротивлений в зависимости от мощности двигателя

Таблица для подбора номиналов сопротивлений в зависимости от мощности двигателя

Приведенное устройство может эксплуатироваться в качестве регулятора оборотов двигателей электроинструментов, пылесосов и другого бытового оборудования.

Регулятор для индуктивной нагрузки

Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Существует два варианта решения проблемы:

  1. Подача на управляющий электрод серии однотипных импульсов.
  2. Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.

Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.

Схема регулятора мощности для индуктивной нагрузки

Схема регулятора мощности для индуктивной нагрузки

Как видно из следующего рисунка, где продемонстрированы осциллограммы основных сигналов регулятора мощности, для открытия симистора используется пакет импульсов.

Осциллограммы входного (А), управляющего (В) и выходного сигнала (С) регулятора мощности

Осциллограммы входного (А), управляющего (В) и выходного сигнала (С) регулятора мощности

Данное устройство делает возможным использование регуляторов на полупроводниковых ключах для управления индукционной нагрузкой.

Простой регулятор мощности на симисторе своими руками

В завершении статьи приведем пример простейшего регулятора мощности. В принципе, можно собрать любую из приведенных выше схем (наиболее упрощенный вариант был приведен на рисунке 2). Для этого прибора даже не обязательно делать печатную плату, устройство может быть собрано навесным монтажом. Пример такой реализации показан на рисунке ниже.

Самодельный регулятор мощности

Самодельный регулятор мощности

Использовать данный регулятор можно в качестве диммера, а также управлять с его помощью мощными электронагревательными устройствами. Рекомендуем подобрать схему, в которой для управления используется полупроводниковый ключ с соответствующими току нагрузки характеристиками.

Источник

Симисторный регулятор мощности

Симисторный регулятор мощностиПростой регулятор мощности для паяльника (лампы) на MAC97A

Простой регулятор мощности до 100Вт можно сделать всего из нескольких деталей. Его можно приспособить для регулирования температуры жала паяльника, яркости настольной лампы, скорости вентилятора и т.п. Регулятор на тиристоре получается по размерам сильно большой и конструктивно имеет недочеты и большую схему. Регулятор мощности на импортном малогабаритном симисторе mac97a (600В; 0,6А) можно коммутировать и более мощные нагрузки, простая схема, плавная регулировка, маленькие габариты.

Если у тиристора есть анод и катод, то электроды у симистора так охарактеризовать нельзя, потому что каждый электрод является и анодом и катодом одновременно. В отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Читайте также:  Как определить потребляемую мощность обогревателя

Простой регулятор мощности для паяльника (лампы) на MAC97A

Как раз простой схемой, характеризующей принцип работы симистора служит наш электронный регулятор мощности.

Простой регулятор мощности для паяльника (лампы) на MAC97A

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность он закроется. Потом процесс повторяется.

Простой регулятор мощности для паяльника (лампы) на MAC97A

Чем больше уровень управляющего напряжения тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса.

В данном случае изменяя управляющее напряжение мы можем регулировать яркость электрической лампочки или температуру жала паяльника, а также скорость вентилятора.

Принципиальная схема регулятора на симисторе MAC97A6

Простой регулятор мощности для паяльника (лампы) на MAC97A

Описание работы регулятора мощности на симисторе

При каждой полуволне сетевого напряжения конденсатор С заряжается через цепочку сопротивлений R1, R2, когда напряжение на С становится равным напряжению открывания динистора VD1 происходит пробой и разрядка конденсатора через управляющий электрод VS1 .

Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.

Симисторный регулятор мощности

В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.

Симисторный регулятор мощностиСимисторный регулятор мощности

Диаграмма вольт-амперной характеристики (ВАХ) динистора DB3 изображена на рисунке:

Симисторный регулятор мощности

Поскольку данный вид полупроводника является симметричным динистором (оба его вывода являются анодами), то нет разницы, как его подключать.

Характеристики динистора DB3

Симисторный регулятор мощности

Кому нужно регулировать нагрузку более 100Вт, ниже представлена похожая схема более мощного регулятора на симисторе ВТ136-600.

Принципиальная схема регулятора на симисторе BT136-600

Симисторный регулятор мощности

Приведенная схема регулятора мощности на симисторе рассчитана на достаточно большой ток нагрузки.

Симисторный регулятор мощности

Если у Вас нет необходимых деталей и платы для сборки регулятора мощности на симисторе MAC97A6, Вы можете купить полный набор для его сборки в нашем магазине.

Источник

KOMITART — развлекательно-познавательный портал

Разделы сайта

DirectAdvert NEWS

GNEZDO NEWS

Друзья сайта

Статистика

Простые встраиваемые регуляторы мощности.

В каждом доме имеются бытовые электроприборы с питанием от электрической сети переменного тока. Расширить возможности и удобство использования многих из этих устройств можно за счет регулирования потребляемой ими мощности.

Одним из наиболее распространенных принципов регулирования мощности в сетях переменного тока является фазовый. При фазовом способе регулирования используется зависимость между моментом (фазой) открытия регулирующего элемента относительно начала полупериода питающего напряжения и потребляемой устройством мощностью.

Для регулирования мощности используется ключевой элемент, в качестве которого наиболее удобно использовать симистор. Изменяя задержку (фазу) времени открытия симистора относительно начала полуволны сетевого питающего напряжения можно регулировать потребляемую нагрузкой мощность практически от 0 до 100%. Зависимость напряжения на нагрузке от фазы открытия симистора показана на рис. 1.

Работа всех нижеприведенных регуляторов основана на фазовом принципе управления. Различаются они максимально допустимой мощностью подключаемой нагрузки. К регулятору, собранному по схеме изображенной на Рис.3, можно подключать нагрузку переменного тока мощностью до 1000 Вт. К регулятору, собранному по схеме Рис.6 — до 2500 Вт. Эти регуляторы позволят управлять мощностью электронагревательных и осветительных приборов (в т.ч. температурой нагрева электропаяльника), регулировать частоту вращения асинхронных электродвигателей переменного тока (вентилятора, электро-наждака, электродрели и т.д.). Благодаря широкому диапазону регулировки и большой мощности регуляторы найдут самое широкое применение в нашем быту.

Читайте также:  Opel astra ошибка esp мощность двигателя будет ограничена

РЕГУЛЯТОР МОЩНОСТИ НА 1000 ВТ/220 В.

Регулятор мощности на 1000 Вт/220 В. Общий вид этого устройства представлен на рис. 2, схема электрическая принципиальная на рис. 3.

Простые встраиваемые регуляторы мощности.

Перечень элементов схемы до 1000 Вт.

• C1 — 0,1мкФ
• R1 — 4,7кОм
• VR1 — 500кОм (Переменный резистор)
• DIAC — DB3 (динистор)
• TRIAC — BT136600E (симистор)
• D1 — 1N4148
• LED — желтый светодиод

Простые встраиваемые регуляторы мощности.

ОПИСАНИЕ РАБОТЫ.

Симисторный регулятор мощности использует принцип фазового управления. Принцип работы регулятора основан на изменении момента включения симистора относительно перехода сетевого напряжения через ноль (начала положительной или отрицательной полуволны питающего напряжения).

В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения (рис. 1), конденсатор С1 заряжается через делитель R1, VR1. Нарастающее напряжения на конденсаторе С1 отстает (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов R1, VR1 и емкости С1. Заряд конденсатора продолжается до тех пор, пока напряжение на нем не достигнет порога «пробоя» динистора (около 32 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечет ток, определяемый суммарным сопротивлением открытого симистора и нагрузки. Симистор остается открытым до конца полупериода. Резистором VR1 устанавливается напряжение открывания динистора и симистора. Т.е. этим резистором производится регулировка мощности. Во время действия отрицательной полуволны принцип работы схемы аналогичен. Светодиод LED индицирует рабочий режим регулятора мощности.

Конструктивно схема выполнена на печатной плате из фольгированного стеклотекстолита с размерами 38×27 мм.

Простые встраиваемые регуляторы мощности.

Основные параметры симисторов BT136-600(D,E):

Максимальное повторяющееся импульсное напряжение в закрытом состоянии — 600V
Максимальное среднеквадратическое значение (RMS) тока в открытом состоянии — 4A
Максимальный однократный импульсный ток (20mS) — 25A

Отпирающий ток управления:
BT136-600

РЕГУЛЯТОР МОЩНОСТИ НА 2500 ВТ/220 В.

Регулятор мощности позволит управлять нагрузкой до 2,5 кВт в сети 220 В переменного тока. Внешний вид устройства приведен на рис. 5, а электрическая принципиальная схема — на рис. 6. Схема устройства в основном аналогична вышеописанной схеме. Добавлена помехоподавляющая цепь С2, R3. Выключатель SW позволяет разрывать цепь зарядки управляющего конденсатора С1, что приводит к запиранию симистора и отключению нагрузки. В остальном работа схемы полностью аналогична вышеописанной.

Простые встраиваемые регуляторы мощности.

Схема регулятора мощности 2500 Вт

Конструктивно схема выполнена на печатной плате из фольгированного стеклотекстолита с размерами 85×69 мм. С целью более эффективного теплоотвода предусмотрен радиатор для симистора. Переменный резистор, используемый для регулирования мощности, можно устанавливать на корпусе устройства.

Перечень элементов схемы до 2500 Вт.

• C1 — 0,1 мкФ
• C2 — 0,1 мкФ / 600В
• R1 — 4,7 кОм
• R2 — 220 Ом
• VR1 — 500кОм (Переменный резистор)
• DIAC — DB3 (динистор)
• TRIAC — BTA26-600B (симистор, 600V, 25А)
• D1 — 1N4148
• LED — зеленый светодиод

Простые встраиваемые регуляторы мощности.

Сетевой фильтр для регуляторов.

Для снижения уровня помех создаваемых регуляторами можно использовать сетевой фильтр. Предохранители F1, F2 — на ток 3А, конденсаторы С1, С2 — с рабочим напряжением 400. 630 В.

Простые встраиваемые регуляторы мощности.

Простые встраиваемые регуляторы мощности.

Еще один простой регулятор.

На просторах интернета нам попалась еще одна схемка, автор применил ее в качестве регулятора для пылесоса:

Схема регулятора для пылесоса Схема регулятора для пылесоса

К статье добавил архив с файлом плат в формате LAY6 на версию схемы с симистором BT136-600E и BTA26-600 25A. Вид плат ниже:

Источник