Меню

Базальтовый слой океанической коры имеет мощность



Экология СПРАВОЧНИК

Информация

Базальтовый слой

Слой 2Б океанической коры представляет собой комплекс даек, близких по составу перекрывающему их базальтовому слою 2А. Породы слоя 2Б менее доступны для изучения, чем базальты слоя 2А, гак как вскрываются в основном в офиолитовых комплексах, в трансформных разломах и в редких скважинах глубоководного бурения (например, скв.504Б на южном фланге хребта Коста-Рика). Вследствие малой доступности пород слоя 2Б изученность их петромагнитных свойств хуже, чем для базальтов слоя 2А. Разброс значений естественной остаточной намагниченности и фактора Кенигсберга для этих пород очень велик. Хотя наиболее реальные их средние значения варьируют, соответственно, от 1,5 до 2 А/м и около 5 А/м [101].[ . ]

Базальтовый слой образован кристаллическими породами, близкими к изверженным базальтам. Это метаморфизованные магматические породы основного состава (с содержанием ЭЮ2 55—40%), более плотные по сравнению с породами гранитного слоя.[ . ]

БАЗАЛЬТОВЫЙ СЛОЙ —■ нижний слой земной коры, расположенный между гранитным слоем и верхней мантией Земли.[ . ]

Второй слой океанической коры — базальтовый, в верхней своей части сложен подушечными лавами толеитовых базальтов океанского типа (слой 2А). Ниже располагаются долеритовые дайки того же состава (слой 2Б) (рис. 1.2). Общая мощность базальтового слоя океанической коры, по сейсмическим данным, достигает 1,4-1,5, иногда 2 км.[ . ]

Верхний слой, развитый не повсеместно, носит название вулканогенно-осадочного. Средний слой, распространенный на материках, но отсутствующий на дне океанов, называется гранитным. И, наконец, нижний слой носит название базальтового слоя. Термины «гранитный» и «базальтовый» не следует понимать буквально и связывать это с составом представляющих указанные слои горных пород. Просто, по геофизическим данным скорость прохождения сейсмических волн в этих слоях отвечает в обобщенном виде составу гранитов и базальтов.[ . ]

Граница между гранитным и базальтовым слоями называется поверхностью Конрада1. Этому разделу соответствует скачок скорости сейсмических волн от 6 до 6,5 км/с.[ . ]

Земная кора состоит из трех слоев, в которых по происхождению преобладают те или иные горные породы: слой осадочных пород мощностью до 15км, ниже — гранитный слой до 40 км и еще ниже — базальтовый слой до 80 км (см. рис. 1). Границы между ними условные. Для каждого слоя характерны определенные скорости прохождения сейсмических волн. Нижние зоны земной коры в связи с высокими температурами характеризуются присутствием очагов расплавленных минеральных масс (магмы). Под влиянием высокого давления происходят процессы метаморфизма, т. е. переуплотнения минеральных образований с созданием иных кристаллических структур с новыми физическими свойствами.[ . ]

Океаническая кора значительно тоньше материковой и состоит из двух слоев. Ее минимальная мощность не превышает 5 — 7 км. Верхний слой земной коры здесь представлен рыхлыми глубоководными осадками. Мощность его обычно определяется в несколько сотен метров, а ниже располагается базальтовый слой мощностью в несколько километров.[ . ]

Действительно, под сравнительно небольшим, до полукилометра толщиной, слоем рыхлых осадков на дне современных океанов залегают не граниты, а преимущественно базальты. Однако особенности протекания физико-химических процессов в земной коре таковы, что очень мала вероятность погружения относительно легких гранитных масс в более тяжелые и плотные базальтовые слои.[ . ]

Они связаны с магматическими очагами, в основном приуроченными к базальтовому слою земной коры (см. рис. 1). Здесь господствуют высокие температуры и давление.[ . ]

Строение литосферы и ее положение относительно мантии Земли Строение литосферы и ее положение относительно мантии Земли

Второе: земная кора сначала повсеместно была океанической, так как всюду прослеживается «базальтовый» слой. Остатком такой первичной земной коры, покрывающей весь Земной шар, является ложе Тихого океана (М. В. Муратов, 1975). Превращение океанической коры в континентальную, наращивание ее мощности происходило в результате появления и последующего отмирания геосинклиналей.[ . ]

Континентальная и океаническая кора различна не только по толщине, но и составу пород. Гранитный слой, характерный для континентальной коры, отсутствует в океанической коре. Да и сам базальтовый слой океанической коры, сложенный основными магматическими породами, весьма своеобразен, отличен от аналогичного слоя континентальной коры, в котором наряду с основными значительное участие принимают кислые магматические породы.[ . ]

Некоторые исследователи [540] связывают гравитационный минимум на оси палеоспредингового хребта с наличием в базальтовом слое аномального тела неправильной формы с пониженной плотностью, которое может представлять реликт магматической камеры. Это предположение подтверждают результаты сейсмических экспериментов на хребте Эгир [556], фиксирующие аномальную структурную зону на глубинах на 3,7 км ниже уровня дна со скоростями сейсмических волн (УР= 7,4-;-7,5 км/с) слишком высокими для базальтового слоя, но слишком низкими для мантийного материала [556]. Соответствия между наблюденными и вычисленными аномалиями гравитационного поля можно достичь, предполагая, что в осевой зоне хребта Эгир присутствуют осадки толщиной 5 км, но такое допущение маловероятно.[ . ]

Земная кора — твердая внешняя оболочка Земли толщиной до 70 км в горных областях, около 30 км под равнинами, 5—7 км под океанами. Верхняя часть земной коры — осадочный слой, он состоит из осадочных пород, средняя — «гранитный» слой (выражен только на материках), нижняя — «базальтовый» слой. Под земной корой располагается мантия (толщиной около 2900 км). Занимает 83% Земли (без атмосферы) по объему и 67% по массе. Мантия Земли состоит, видимо, преимущественно из тяжелых минералов, богатых магнием и железом. С процессами, происходящими в верхней (граничащей с земной корой) мантии Земли, тесно связаны тектонические движения, вулканизмы, горнообразование и др.[ . ]

Читайте также:  Приборы учета электрической мощности это специальные приборы

Можно ожидать, что в центре спрединговых сегментов, над зоной максимального образования расплава, океаническая кора будет отражать присутствие неустановившихся магматических камер и будет демонстрировать четкую структуру слоев коры. Около окончаний сегментов, где образование расплава наименьшее, океаническая кора может быть высоко гетерогенной, отражающей прошлое присутствие недолговечных магматических тел, или может состоять только из тонкого базальтового слоя, перекрывающего мантийные перидотиты. В последнем случае отсутствие слоя габбро будет отражать отсутствие магматического очага и подразумевать латеральное перемещение базальтового расплава от середины сегмента к его границам [487].[ . ]

У. И. Моисеенко, 1983 г.). Плотность теплового потока на территории изменяется от 40 до 80 мВт/м2, составляя в среднем 53 мВт/м2. Геотермические аномалии на глубинах 5—10 км, вероятно, вызваны существованием магматических очагов расплава базальтового слоя, находящихся на глубине 24—42 км.[ . ]

КОРА ЗЕМНАЯ часть литосферы верхняя твердая облочка Земли толщиной от 3-4 до 50-75 км (под океанами 5-10 км). Состоит из осадочного (морские осадки не более I км, па суше в среднем 3 км), «гранитного» (отсутствует под океанами, на суше лежит выше «базальтового») и «базальтового» (под океаном 1-2,5 км, под сушей около 20 км) слоев. Под океаном базальтовый слой подостлан пятикилометровым слоем г аббро. Таким образом, под океанами и гга суше расположено по т ри слоя земной коры, по большинство исследователей отрицает наличие под океанами гранитного слоя, а па суше слоя габбро. Иногда на суше выделяют еще метаморфическую оболочку.[ . ]

ЛИТОСФЕРА (земная кора) [гр. Нйюв камень + Бр1шга шар] — верхняя твердая оболочка Земли, располагающаяся на мантии. Л. различна на материках и под океанами. Материковая кора состоит из прерывистой слоистой оболочки и расположенных под ней гранитного и еще ниже базальтового слоев. Общая толщина литосферы составляет 35—45 км (в горных областях до 50—70 км). Океаническая кора имеет толщину 5—10 км и состоит из тонкого (в среднем менее 1 км) слоя осадков, под которым находятся основные породы (базальт, габбро).[ . ]

Ширина перекрытий также явно не связана со скоростью спрединга. Имеющиеся данные по ПЦС и проведенные эксперименты по их моделированию показывают, что для крупных ПЦС она зависит от стадии их развития. Для мелких перекрытий ширина прежде всего зависит от толщины разрушаемого в осевой зоне рифта хрупкого базальтового слоя и соизмерима с ним [42].[ . ]

Самые крупные и сложные геокомплексы Земли — это континенты и океаны. Они формируются на самых крупных формах рельефа — континентальных выступах и океанических впадинах Земли с различными типами земной коры. Земная кора континентов в отличие от океанической имеет значительно большую мощность и гранитный слой. Граница между континентами и океанами как геокомплексами проходит по береговой линии. К океанам как аквальным геокомплексам относится затопленная часть континентов-шельф, материковый склон и дно, сложенное базальтовым слоем.[ . ]

Твердая оболочка Земли — земная кора, сложенная осадочными и кристаллическими породами, образует сплошную оболочку, 2/3 которой перекрыто водами океанов и морей. Наибольшая мощность земной коры 40—100 км, под океанами толща ее резко сокращается. По физическим свойствам земная кора делится на два типа: материковый и океанический. Земная кора материкового типа — равнинных и горных районов — богата кремнием и алюминием, характерными для пород группы гранита. Мощность гранитного слоя (сиаля) увеличивается в горах. Океанический тип земной коры представлен породами типа базальта с преобладанием кремния и магния. Здесь гранитный слой отсутствует, а мощность базальтового слоя (сима) доходит до 15 км.[ . ]

Наиболее продолжительный опыт захоронения РАО накоплен в США. Первый из полигонов был открыт на территории Хэндфорд-ского военного комплекса площадью 1450 км2, основанного в 1943 г. (р. Колумбия, штат Вашингтон). Сейчас здесь сосредоточено 60% BAO США. В грунтовых траншеях содержится 75 тыс. т химически опасных отходов и 90 тыс. Военные отходы хранят в основном в подземных стальных емкостях государственного резерва. Около 750 млн м3 водных растворов НАО закачано в пруды-испарители, бассейны выдержки, 64 подземные емкости, ямы и траншей. Предполагалось, что подземные базальтовые слои, на которых размещен комплекс, являются уникальной средой для размещения РАО и опасные радионуклиды достигнут р. Колумбия не ранее чем через 200 лет, в течение которых их активность снизится до приемлемой. Реальность оказалась иной. Захоронение РАО и опасных химических отходов непосредственно в грунт привело к обнаружению загрязнений за пределами комплекса уже в 1956 г. (Довгуша. 1996).[ . ]

Источник

Океаническая кора

Океаническая кора примитивна по своему составу и, по существу, представляет собой верхний дифференцированный слой мантии, перекрытый сверху тонким слоем пелагических осадков. В океанической коре обычно выделяют три слоя, первый из них (верхний) — осадочный.

В основании осадочного слоя часто залегают тонкие и не выдержанные по простиранию металлоносные осадки с преобладанием в них окислов железа. Нижняя часть осадочного слоя обычно сложена карбонатными осадками, отложившимися на глубинах менее 4-4,5 км. На больших глубинах карбонатные осадки, как правило, не отлагаются, поскольку слагающие их микроскопические раковины одноклеточных организмов (фораминифер и коколитофарид) при давлениях выше 400-450 атм легко растворяются в морской воде. По этой причине в океанических впадинах на глубинах больше 4-4,5 км верхняя часть осадочного слоя сложена в основном только бескарбонатными осадками — красными глубоководными глинами и кремнистыми илами. Возле островных дуг и вулканических островов в разрезе осадочной толщи часто встречаются линзы и прослои вулканогенных отложений, а вблизи дельт крупных рек — и терригенные осадки. В открытых океанах толщина осадочного слоя возрастает от гребней срединно-океанических хребтов, где осадков почти нет, к их периферийным частям. Средняя мощность осадков невелика и, по оценкам А. П. Лисицына, близка к 0,5 км, возле же континентальных окраин атлантического типа и в районах крупных речных дельт она возрастает до 10-12 км. Связано это с тем, что практически весь терригенный материал, сносимый с суши, благодаря процессам лавинной седиментации отлагается в прибрежных участках океанов и на материковых склонах континентов.

Читайте также:  Rec pa 400sn усилитель мощности

Второй, или базальтовый, слой океанической коры в верхней части сложен базальтовыми лавами толеитового состава (рис. 5). Изливаясь в подводных условиях, эти лавы приобретают причудливые формы гофрированных труб и подушек, поэтому они и называются подушечными лавами. Ниже располагаются долеритовые дайки того же толеитового состава, представляющие собой бывшие подводящие каналы, по которым базальтовая магма в рифтовых зонах изливалась на поверхность океанского дна. Базальтовый слой океанической коры обнажается во многих местах океанского дна, примыкающих к гребням срединно-океанических хребтов и оперяющих их трансформных разломов. Этот слой был подробно изучен как традиционными методами исследования океанского дна (драгирование, отбор проб грунтовыми трубками, фотографирование), так и с помощью подводных обитаемых аппаратов, позволяющих геологам наблюдать геологическое строение исследуемых объектов и проводить целенаправленный отбор образцов пород. Кроме того, за последние 20 лет поверхность базальтового слоя и верхние его слои были вскрыты многочисленными скважинами глубоководного бурения, одна из которых даже прошла слой подушечных лав и вошла в долериты дайкового комплекса. Общая мощность базальтового, или второго, слоя океанической коры, судя по сейсмическим данным, достигает 1,5, иногда 2 км.

Рисунок 5. Строение рифтовой зоны и океанической коры:
1 — уровень океана; 2 — осадки; 3 — подушечные базальтовые лавы (слой 2а); 4 — дайковый комплекс, долериты (слой 2б); 5 — габбро; 6 — расслоенный комплекс; 7 — серпентиниты; 8 — лерцолиты литосферных плит; 9 — астеносфера; 10 — изотерма 500 °С (начало серпентинизации).

Частые находки в пределах крупных трансформных разломов включений габбро толеитового состава говорят о том, что в состав океанической коры входят и эти плотные и крупнокристаллические породы. Строение офиолитовых покровов в складчатых поясах Земли, как известно, представляют собой фрагменты древней океанической коры, надвинутой в этих поясах на бывшие края континентов. Поэтому можно заключить, что дайковый комплекс в современной океанической коре (как и в офиолитовых покровах) снизу подстилается слоем габбро, слагающим собой верхнюю часть третьего слоя океанической коры (слой 3а). На некотором удалении от гребней срединно-океанических хребтов, судя по сейсмическим данным, прослеживается и нижняя часть этого слоя коры. Многочисленные находки в крупных трансформных разломах серпентинитов, отвечающих по составу гидратированным перидотитам и аналогичным по строению серпентинитам офиолитовых комплексов, позволяют считать, что нижняя часть океанической коры также сложена серпентинитами. По сейсмическим данным, мощность габбро-серпентинитового (третьего) слоя океанической коры достигает 4,5-5 км. Под гребнями срединно-океанических хребтов мощность океанической коры обычно сокращается до 3-4 и даже до 2-2,5 км непосредственно под рифтовыми долинами.

Общая мощность океанической коры без осадочного слоя, таким образом, достигает 6,5-7 км. Снизу океаническая кора подстилается кристаллическими породами верхней мантии, слагающими подкоровые участки литосферных плит. Под гребнями срединно-океанических хребтов океаническая кора залегает непосредственно над очагами базальтовых расплавов, выделившихся из вещества горячей мантии (из астеносферы).

Площадь океанической коры приблизительно равна 3,0610× 18 см 2 (306 млн км 2 ), средняя плотность океанической коры (без осадков) близка к 2,9 г/см 3 , следовательно, массу консолидированной океанической коры можно оценить значением (5,8-6,2)х10 24 г. Объём и масса осадочного слоя в глубоководных котловинах мирового океана, по оценке А. П. Лисицына, составляет соответственно 133 млн км 3 и около 0,1×10 24 г. Объём осадков, сосредоточенных на шельфах и материковых склонах, несколько больший — около 190 млн км 3 , что в пересчёте на массу (с учётом уплотнения осадков) составляет примерно (0,4-0,45) 10 24 г.

Океанское дно, представляющее собой поверхность океанической коры, имеет характерный рельеф. В абиссальных котловинах океанское дно залегает на глубинах около 66,5 км, тогда как на гребнях срединно-океанических хребтов, иногда расчленённых крутыми ущельями, рифтовыми долинами, глубины океана уменьшаются до 2-2,5 км. В некоторых местах океанское дно выходит на дневную поверхность Земли, например, на о. Исландия и в провинции Афар (Северная Эфиопия). Перед островными дугами, окружающими западную периферию Тихого океана, северо-восток Индийского океана, перед дугой Малых Антильских и Южно-Сандвичевых островов в Атлантике, а также перед активной окраиной континента в Центральной и Южной Америке океаническая кора прогибается и её поверхность погружается на глубины до 9-10 км, уходя далее под эти структуры и формируя перед ними узкие и протяжённые глубоководные желоба.

Океаническая кора формируется в рифтовых зонах срединно-океанических хребтов за счёт происходящей под ними сепарации базальтовых расплавов из горячей мантии (из астеносферного слоя Земли) и их излияния на поверхность океанического дна. Ежегодно в этих зонах поднимается из астеносферы, изливается на океанское дно и кристаллизуется не менее 5,5-6 км 3 базальтовых расплавов, формирующих собой весь второй слой океанической коры (с учётом же слоя габбро объем внедряемых в кору базальтовых расплавов возрастает до 12 км3). Эти грандиозные тектономагматические процессы, постоянно развивающиеся под гребнями срединно-океанических хребтов, не имеют себе равных на суше и сопровождаются повышенной сейсмичностью (рис. 6).

Читайте также:  Выходная мощность магнитолы 6000cd

Рисунок 6. Сейсмичность Земли; размещение землетрясений
Barazangi, Dorman, 1968

В рифтовых зонах, расположенных на гребнях срединно-океанических хребтов, происходит растяжение и раздвижение дна океанов. Поэтому все такие зоны отмечаются частыми, но мелкофокусными землетрясениями с доминированием разрывных механизмов смещений. В противоположность этому под островными дугами и активными окраинами континентов, т.е. в зонах поддвига плит, обычно происходят более сильные землетрясения с доминированием механизмов сжатия и сдвига. По сейсмическим данным, погружение океанической коры и литосферы прослеживается в верхней мантии и мезосфере до глубин около 600-700 км (рис. 7). По данным же томографии, погружение океанических литосферных плит прослежено до глубин около 1400-1500 км и, возможно, глубже — вплоть до поверхности земного ядра.

Рисунок 7. Строение зоны поддвига плит в районе Курильских островов:
1 — астеносфера; 2 — литосфера; 3 — океаническая кора; 4–5 — осадочно-вулканогенная толща; 6 — океанические осадки; изолиниями показана сейсмическая активность в единицах A10 (Федотов и др., 1969); β — угол падения зоны Вадати — Беньефа; α — угол падения зоны пластических деформаций.

Океанскому дну присущи характерные и достаточно контрастные полосчатые магнитные аномалии, обычно располагающиеся параллельно гребням срединно-океанических хребтов (рис. 8). Происхождение этих аномалий связано со способностью базальтов океанского дна при остывании намагничиваться магнитным полем Земли, запоминая тем самым направление этого поля в момент их излияния на поверхность океанского дна. Учитывая теперь, что геомагнитное поле с течением времени многократно меняло свою полярность, английским учёным Ф. Вайну и Д. Мэтьюзу ещё в 1963 г. впервые удалось датировать отдельные аномалии и показать, что на разных склонах срединно-океанических хребтов эти аномалии оказываются приблизительно симметричными по отношению к их гребням. В результате им удалось восстановить основные закономерности перемещений плит на отдельных участках океанической коры в Северной Атлантике и показать, что океанское дно приблизительно симметрично раздвигается в стороны от гребней срединно-океанических хребтов со скоростями порядка нескольких сантиметров в год. В дальнейшем аналогичные исследования были проведены по всем акваториям Мирового океана, и везде эта закономерность была подтверждена. Более того, подробное сопоставление магнитных аномалий океанского дна с геохронологией перемагничивания континентальных пород, возраст которых был известен по другим данным, позволило распространить датировку аномалий на весь кайнозой, а потом и на поздний мезозой. В результате был создан новый и надёжный палеомагнитный метод определения возраста океанского дна.

Рисунок 8. Карта аномалий магнитного поля в районе подводного хребта Рейкьянес в Северной Атлантике
(Heirtzler et al., 1966). Положительные аномалии обозначены чёрным; АА — нулевая аномалия рифтовой зоны.

Использование этого метода привело к подтверждению высказывавшихся ранее идей о сравнительной молодости океанского дна: палеомагнитный возраст всех без исключения океанов оказался только кайнозойским и позднемезозойским (рис. 9). В дальнейшем этот вывод был блестяще подтверждён и глубоководным бурением во многих точках океанского дна. При этом получалось, что возраст впадин молодых океанов (Атлантического, Индийского и Северного Ледовитого) совпадают с возрастом их дна, возраст же древнего Тихого океана значительно превосходит возраст его дна. Действительно, впадина Тихого океана существует, по крайней мере, с позднего протерозоя (может быть, и ранее), а возраст наиболее древних участков дна этого океана не превышает 160 млн лет, тогда как его большая часть образовалась только в кайнозое, т.е. моложе 67 млн лет.

Рисунок 9. Карта возраста дна океана в миллионах лет
по Larson, Pitman et al., 1985

«Конвейерный» механизм обновления океанского дна с постоянным погружением более древних участков океанической коры и накопившихся на ней осадков в мантию под островными дугами объясняет, почему за время жизни Земли океанические впадины так и не успели засыпаться осадками. Действительно, при современных темпах засыпки океанических впадин сносимыми с суши терригенными осадками 2,210× 16 г/год весь объём этих впадин, примерно равный 1,3710× 24 см 3 , оказался бы полностью засыпанным приблизительно через 1,2 млрд лет. Сейчас можно с большой уверенностью утверждать, что континенты и океанические бассейны совместно существуют около 3,8 млрд лет и никакой значительной засыпки их впадин за это время не произошло. Более того, после проведения буровых работ во всех океанах теперь мы достоверно знаем, что на океанском дне не существует осадков древнее 160-190 млн лет. Но такое может наблюдаться только в одном случае — в случае существования эффективного механизма удаления осадков из океанов. Этим механизмом, как теперь известно, является процесс затягивания осадков под островные дуги и активные окраины континентов в зонах поддвига плит, где эти осадки переплавляются и вновь причленяются в виде гранитоидных интрузий к формирующейся в этих зонах континентальной коре. Такой процесс переплавления терригенных осадков и повторного причленения их материала к континентальной коре называется рециклингом осадков.

Источник