Меню

Амплитудно частотные характеристики усилителей мощности



Амплитудная характеристика усилителя

Амплитудная характеристика усилителя – это зависимость амплитуды выходного напряжения усилителя от изменения амплитуды напряжения на входе. По этой характеристике судят о пределах изменения входного и выходного сигналов усилителя. Ее снимают при синусоидальном входном сигнале для области средних частот. Типичный вид амплитудной характеристики усилителя показан на рис. 4.9.

Участок 2 – 3 соответствует пропорциональной зависимости амплитуды выходного напряжения Uвых m от амплитуды входного напряжения Uвх m, которые связаны между собой коэффициентом усиления

Амплитудная характеристика не проходит через начало координат из-за наличия на выходе усилителя собственных шумов. Участок 1 – 2 амплитудной характеристики не используется, так как здесь полезный сигнал трудно отличить от собственных шумов усилителя. По величине Umin/KU оценивают уровень минимальных напряжений входного сигнала (чувствительность) усилителя.

При достижении некоторого уровня входного сигнала, соответствующего точке 3, пропорциональность зависимости выходного напряжения от входного сигнала нарушается. Причиной является ограничение максимального напряжения одной или обеих полуволн выходного напряжения на неизменном уровне. Ограничение выходного напряжения обуславливается перемещением рабочей точки каскада вдоль линии нагрузки по переменному току в область начальных участков коллекторных характеристик (для одной полуволны), либо в область отсечки коллекторного тока (для другой полуволны).

Отношение максимально допустимого выходного напряжения к минимально допустимому называется динамическим диапазоном усилителя

При входном напряжении синусоидальной формы сигнал на выходе усилителя нельзя считать чисто синусоидальным. Искажения формы выходного напряжения, вносимые усилителем, называют нелинейными. Нелинейные искажения, создаваемые усилителем, оценивают для синусоидального входного напряжения, исходя из состава высших гармоник, появляющихся в кривой выходного напряжения усилителя из-за отличия формы выходного напряжения от синусоидальной. Мерой оценки служит коэффициент нелинейных искажений (клирфактор) усилителя, выражаемый в процентах:

где U1 – действующее значение первой (основной) гармоники выходного напряжения; U2, U3, U4…- действующие значения высших гармоник выходного напряжения, появляющихся вследствие отличия формы выходного напряжения от синусоидальной.

Усилители с обратной связью

Обратная связь осуществляется подачей на вход усилителя сигнала с его выхода. Структурная схема усилителя с обратной связью показана на рис. 4.10. Звено обратной связи характеризуется коэффициентом передачи ŵ, показывающим связь параметра (напряжения, тока) выходного сигнала этого звена с параметром (напряжением, током) выходной цепи усилителя. Коэффициент усиления усилителя Ķ и коэффициент передачи цепи обратной связи (ОС) ŵ показаны на рис. 4.10 в виде комплексных значений с целью учета возможного фазового сдвига, возникающего на низких и высоких частотах из-за наличия в схеме усилителя и в цепи ОС реактивных элементов. Если анализируется работа усилителя в области средних частот и в цепи ОС отсутствуют реактивные элементы, то можно использовать действительные значения коэффициентов K и w.

Различают четыре основных вида обратной связи:

— последовательная обратная связь по напряжению;

— последовательная обратная связь по току;

— параллельная обратная связь по напряжению;

— параллельная обратная связь по току.

Обратная связь по напряжению реализуется путем измерения выходного напряжения и подачей некоторой его части на вход. Обратная связь по току реализуется путем измерения выходного тока и подачей некоторой его части на вход.

Последовательная обратная связь реализуется путем суммирования на входе усилителя напряжения входного сигнала и напряжения, пропорционального выходному напряжению или току. Параллельная обратная связь реализуется путем суммирования на входе усилителя тока входного сигнала и тока, пропорционального выходному напряжению или току.

Обратную связь называют положительной, если результат ее воздействия приводит к увеличению сигнала на входе и, следовательно, на выходе. Если результат воздействия обратной связи приводит к уменьшению сигнала на входе и выходе, то обратную связь называют отрицательной. Отрицательная обратная связь позволяет улучшить некоторые показатели усилителя, поэтому она нашла наибольшее применение.

Читайте также:  Мощность двигателя гусеничного трактора тт 4м квт

Коэффициент усиления усилителя, охваченного обратной связью, в области средних частот можно определить по формуле

Знак «-» в выражении (4.5) соответствует положительной обратной связи, а знак «+» — отрицательной. Таким образом, коэффициент усиления усилителя, охваченного положительной обратной связью, больше коэффициента усиления самого усилителя, а коэффициент усиления усилителя, охваченного отрицательной обратной связью, меньше коэффициента усиления самого усилителя.

Положительная обратная связь может привести к самовозбуждению усилителя, когда на выходе усилителя появляется сигнал, состоящий из спектра частот независимо от сигнала на входе. Такой режим работы возникает, если выполняется неравенство |KU w| ³ 1. Это свойство положительной обратной связи используется при построении генераторов напряжения.

Отрицательная обратная связь приводит к стабилизации параметров усилителя, охваченного обратной связью. Относительное изменение коэффициента усиления усилителя с отрицательной обратной связью в 1+ KU w раз меньше относительного изменения коэффициента усиления усилителя без обратной связи. При большом коэффициенте усиления KU и большой глубине обратной связи (1+ KU w) удается практически полностью исключить зависимость коэффициента усиления усилителя от изменения его параметров. При этом единицей в знаменателе выражения (4.5) можно пренебречь и коэффициент усиления усилителя будет определяться только коэффициентом передачи цепи обратной связи w:

т. е. практически не будет зависеть от KU и возможных его изменений.

С помощью отрицательных обратных связей, охватывающих отдельные каскады усилителя, решают задачу уменьшения нелинейных искажений выходного сигнала, а также ослабления влияния помех в усилителе.

Обратные связи оказывают влияние и на входное и выходное сопротивления усилителя. Результат этого влияния зависит от вида обратной связи. На входное сопротивление влияет способ подачи сигнала обратной связи на вход усилителя (параллельная или последовательная обратная связь). На выходное сопротивление влияет тип сигнала, снимаемого с выхода усилителя (напряжение или ток).

Введение последовательной отрицательной обратной связи позволяет увеличить входное сопротивление усилителя в 1+ KU w раз. Введение параллельной отрицательной обратной связи уменьшает входное сопротивление усилителя в 1+ KU w раз. Отрицательная обратная связь по напряжению уменьшает выходное сопротивление усилителя в1+ KU w раз, а отрицательная обратная связь по току увеличивает выходное сопротивление усилителя в1+ KU w раз.

4.8 Каскады усиления мощности

Каскады усиления мощности обычно являются выходными (оконечными) каскадами, к которым подключается нагрузка. Поэтому при анализе усилителей мощности основное внимание уделяется энергетическим показателям.

Рассмотренные ранее усилители обеспечивают усиление относительно небольших мощностей. И при проектировании таких усилителей вопросы повышения КПД и вообще энергетических показателей не являются первостепенными. Однако если усилитель служит для питания, к примеру, маломощных двигателей постоянного тока, то высокое значение КПД позволяет снизить потери энергии источника питания, уменьшить нагрев приборов и т.д.

Схемы каскадов усиления мощности отличаются большим разнообразием и могут выполняться как на биполярных, так и на полевых транзисторах, включенных по схеме ОБ, ОЭ (ОИ) или ОК (ОС). По способу подключения нагрузки и связи между каскадами каскады усиления мощности могут быть трансформаторными и бестрансформаторными.

Каскады усиления мощности отличаются от рассмотренных схем не только структурой, но и особенностями расчетов.

Классы усиления

В усилителях мощности нашли применение три класса усиления: класс А, класс В и класс АВ, отличающиеся положением точки покоя на линии нагрузки по постоянному току.

Особенности классов усиления покажем на примере коллекторных характеристик транзистора ОЭ.

Построим зависимость uкэ=f(uбэ), называемую передаточной характеристикой каскада (рис. 4.11).

При увеличении напряжения uбэ растет ток базы iб, растет и ток коллектора.

В результате увеличивается падение напряжения на резисторе Rк, уменьшается падение напряжения uкэк-iк*Rк.

При достижении напряжения Uкэ=Uкэ н, дальнейшее увеличение напряжения uбэ не вызывает изменения напряжения uкэ и тока iк, протекающего через Rк. В этом режиме к Rк приложено напряжение Ек-Uкэ н, и поэтому ток коллектора iк=Iк н=(Ек-Uкэ н)/Rк.

Читайте также:  Схема регулятора оборотов двигателя стиральной машины без потери мощности своими руками

Рассмотрение передаточной характеристики каскада показывает, что при изменении напряжения uбэ или тока iб в цепи маломощного источника сигнала можно изменить ток iк и напряжение uкэ в цепи более мощного источника Ек. Однако коллекторное напряжение можно изменять только в пределах Uкэ н I*ко с таким расчетом, чтобы вывести транзистор на линейный участок входной характеристики, начинающийся с тока I. Такой режим позволяет существенно уменьшить нелинейные искажения выходного сигнала, не очень существенно снижая к.п.д. каскада.

Дата добавления: 2018-02-18 ; просмотров: 6223 ; Мы поможем в написании вашей работы!

Источник

Характеристики усилителей: классификация, диаграммы, основные параметры

рис. 2.1

Усилитель — это электронное устройство, управляющее потоком энергии, идущей от источника питания к нагрузке. Причем мощность, требующаяся для управления, как правило, намного меньше мощности, отдаваемой в нагрузку, а формы входного (усиливаемого) и выходного (на нагрузке) сигналов совпадают (рис. 2.1).

  1. Классификация усилителей
  2. По частоте усиливаемого сигнала:
  3. По роду усиливаемого сигнала
  4. По функциональному назначению
  5. Амплитудная характеристика усилителя
  6. Амплитудно-частотная характеристика (АЧХ) и фазо-частотная характеристика (ФЧХ) усилителя.
  7. Переходная характеристика усилителя

Классификация усилителей

Все усилители можно классифицировать по следующим признакам:

По частоте усиливаемого сигнала:

  • усилители низкой частоты (УНЧ) для усиления сигналов от десятков герц до десятков или сотен килогерц;
  • широкополосные усилители, усиливающие сигналы в единицы и десятки мегагерц;
  • избирательные усилители, усиливающие сигналы узкой полосы частот;

По роду усиливаемого сигнала

  • усилители постоянного тока (УПТ), усиливающие электрические сигналы с частотой от нуля герц и выше;
  • усилители переменного тока, усиливающие электрические сигналы с частотой, отличной от нуля;

По функциональному назначению

  • усилители напряжения, усилители тока и усилители мощности в зависимости от того, какой из параметров усилитель усиливает. Основным количественным параметром усилителя является коэффициент усиления.

В зависимости от функционального назначения усилителя различают коэффициенты усиления по напряжению КU, току Кi или мощности КР:

где Uвх, Iвх — амплитудные значения переменных составляющих соответственно напряжения и тока на входе;

Uвых , Iвых — амплитудные значения переменных составляющих соответственно напряжения и тока на выходе;

Рвх, Рвых — мощности сигналов соответственно на входе и выходе. Коэффициенты усиления часто выражают в логарифмических единицах — децибелах:

Усилитель может состоять из одного или нескольких каскадов. Для многокаскадных усилителей его коэффициент усиления равен произведению коэффициентов усиления отдельных его каскадов: К = К1 · К2 · … · Кn

Если коэффициенты усиления каскадов выражены в децибелах, то общий коэффициент усиления равен сумме коэффициентов усиления отдельных каскадов:

Обычно в усилителе содержатся реактивные элементы, в том числе и «паразитные», а используемые усилительные элементы обладают инерционностью. В силу этого коэффициент усиления является комплексной величиной:

где КU— модуль коэффициента усиления; φ — сдвиг фаз между входным и выходным напряжениями с амплитудами Uвх и Uвых.

Помимо коэффициента усиления важным количественным показателем является коэффициент полезного действия:

где Рист — мощность, потребляемая усилителем от источника питания.

Роль этого показателя особенно возрастает для мощных, как правило, выходных каскадов усилителя.

К количественным показателям усилителя относятся также входное Rвх и выходное Rвых сопротивления усилителя:

где Uвх и Iвх — амплитудные значения напряжения и тока на входе усилителя;

∆Uвых и ∆Iвых — приращения аплитудных значений напряжения и тока на выходе усилителя, вызванные изменением сопротивления нагрузки. Рассмотрим теперь основные характеристики усилителей.

Интересное видео о параметрах усилителя смотрите ниже:

Читайте также:  Усилитель мощности амфитон 50ум 104 стерео

Амплитудная характеристика усилителя

Амплитудная характеристика — это зависимость амплитуды выходного напряжения (тока) от амплитуды входного напряжения (тока) (рис. 2.2).

рис. 2.2

Точка 1 соответствует напряжению шумов, измеряемому при Uвx = 0, точка 2 — минимальному входному напряжению, при котором на выходе усилителя можно различать сигнал на фоне шумов.

Участок 2 − 3 — это рабочий участок, на котором сохраняется пропорциональность между входным и выходным напряжениями усилителя.

После точки 3 наблюдаются нелинейные искажения входного сигнала. Степень нелинейных искажений оценивается коэффициентом нелинейных искажений (или коэффициентом гармоник):

рис. 2.3

где Ulm, U2m, U3m, Unm — амплитуды 1-й (основной), 2, 3 и n-й гармоник выходного напряжения соответственно. Величина D = Uвх max / Uвх minхарактеризует динамический диапазон усилителя. Рассмотрим пример возникновения нелинейных искажений (рис. 2.3). При подаче на базу транзистора относительно эмиттера напряжения синусоидальной формы uбэ в силу нелинейности входной характеристики транзистора iб = f(uбэ) входной ток транзистора iб (а следовательно, и выходной — ток коллектора) отличен от синусоиды, т. е. в нем появляется ряд высших гармоник.

Из приведенного примера видно, что нелинейные искажения зависят от амплитуды входного сигнала и положения рабочей точки транзистора и не связаны с частотой входного сигнала, т. е. для уменьшения искажения формы выходного сигнала входной должен быть низкоуровневым.

Поэтому в многокаскадных усилителях нелинейные искажения в основном появляются в оконечных каскадах, на вход которых поступают сигналы с большой амплитудой.

Амплитудно-частотная характеристика (АЧХ) и фазо-частотная характеристика (ФЧХ) усилителя.

АЧХ — это зависимость модуля коэффициента усиления от частоты, а ФЧХ — это зависимость угла сдвига фаз между входным и выходным напряжениями от частоты. Типовая АЧХ приведена на рис. 2.4.

рис. 2.4

Частоты fн и fв называются нижней и верхней граничными частотами, а их разность (fн − fв) — полосой пропускания усилителя.

При усилении гармонического сигнала достаточно малой амплитуды искажения формы усиленного сигнала не возникает.

При усилении сложного входного сигнала, содержащего ряд гармоник, эти гармоники усиливаются усилителем неодинаково, так как реактивные сопротивления схемы по-разному зависят от частоты, и в результате это приводит к искажению формы усиленного сигнала.

Такие искажения называются частотными и характеризуются коэффициентом частотных искажений: М = K / Kf где Kf — модуль коэффициента усиления усилителя на заданной частоте.

Коэффициенты частотных искажений МН = K / KН и МВ = K / KВ называются соответственно коэффициентами искажений на нижней и верхней граничных частотах. АЧХ может быть построена и в логарифмическом масштабе. В этом случае она называется ЛАЧХ (рис. 2.5), коэффициент усиления усилителя выражают в децибелах, а по оси абсцисс откладывают частоты через декаду (интервал частот между 10f и f). рис. 2.5Обычно в качестве точек отсчета выбирают частоты, соответствующие f = 10n. Кривые ЛАЧХ имеют в каждой частотной области определенный наклон. Его измеряют в децибелах на декаду. Типовая ФЧХ приведена на рис. 2.6. рис. 2.6Она также может быть построена в логарифмическом масштабе. В области средних частот дополнительные фазовые искажения минимальны.

ФЧХ позволяет оценить фазовые искажения, возникающие в усилителях по тем же причинам, что и частотные.

Пример возникновения фазовых искажений приведен на рис. 2.7, где показано усиление входного сигнала, состоящего из двух гармоник (пунктир), которые при усилении претерпевают фазовые сдвиги.

рис. 2.7

Переходная характеристика усилителя

Переходная характеристика усилителя— это зависимость выходного сигнала (тока, напряжения) от времени при скачкообразном входном воздействии (рис. 2.8).

рис. 2.8

Частотная, фазовая и переходная характеристики усилителя однозначно связаны друг с другом. Области верхних частот соответствует переходная характеристика в области малых времен, области нижних частот — переходная характеристика в области больших времен.

Ещё одно интересное видео по теме смотрите ниже:

Источник