Меню

Амплитуда сигнала через мощность



Измерение амплитуды сигналов

Амплитуду синусоидального сигнала, а также любого другого сигнала, можно оценивать не только как абсолютное максимальное его значение. Иногда пользуются понятием двойная амплитуда (амплитуда от пика до пика сигнала), которая, как нетрудно догадаться, равна удвоенной амплитуде. Иногда употребляют понятие эффективное значение, которое определяется следующим образом: UЭФФ = Um = 0,707Um. Это соотношение справедливо только для синусоидальных сигналов: для других видов сигналов отношение амплитуды к эффективному значению будет другим. Синусоидальные сигналы часто характеризуются эффективными значениями; дело в том, что именно эффективное значение используется для определения мощности. В России напряжение в сети имеет эффективное значение 220 В и частоту 50 Гц.

Измерение амплитуды в децибелах. Как сравнить амплитуды двух сигналов? Можно, например, сказать, что сигнал X в два раза больше, чем сигнал Y. Во многих случаях именно так и производят сравнение. Но очень часто подобные отношения достигают миллионов, и тогда удобнее пользоваться логарифмической зависимостью и измерять отношение в децибелах (децибел составляет одну десятую часть бела, но единицей «бел» никогда не пользуются). По определению отношение двух сигналов, выраженное в децибелах:

где А1 и А2 – амплитуды двух сигналов. Например, если один сигнал имеет амплитуду вдвое большую, чем другой, то отношение первого сигнала ко второму составляет +6 дБ, так как lg2 = 0,3010. Если один сигнал в 10 раз больше другого, то отношение первого ко второму составляет +20 дБ, в 100 раз – +40 дБ, а если один сигнал в 10 раз меньше другого – то -20 дБ. Отношение мощностей двух сигналов определяется как dБ = 10lg(Р21), где P1 и Р2 – мощности двух сигналов. Если оба сигнала имеют одну и ту же форму, т.е. представлены синусоидами, то оба способа определения отношения сигналов (через амплитуду и мощность) дают одинаковый результат. Для сравнения сигналов разной формы, например, синусоидального и шумового следует использовать мощность (или эффективные значения).

Хотя децибел служит для определения отношения двух сигналов, иногда эту единицу используют для измерения абсолютного, а не относительного значения амплитуды. Дело в том, что можно взять некоторую эталонную амплитуду и определять любую другую амплитуду в децибелах по отношению к эталонной. Известно несколько стандартных значений амплитуды, используемых для такого сравнения (эти значения не указываются, но подразумеваются); приведем некоторые из них: а) дБВ – эффективное значение 1 В; б) дБВт – напряжение, соответствую-щее мощности 1 мВт на некоторой предполагаемой нагрузке, для радиочастот это обычно 50 Ом, для звуковых частот – 600 Ом (напряжение 0 дБВт на этих нагрузках имеет эффективное значение 0,22 В и 0,78 В); в) дБп – небольшой шумовой сигнал, генерируемый резистором при комнатной температуре. Нужно обратить внимание на эталонную амплитуду 0 дБ: при использовании этого значения нужно не забывать его оговаривать, например «амплитуда 27 дБ относительно эффективного значения 1 В», или в сокращенной форме «27 дБ относительно 1 Вэфф» или пользоваться условным обозначением дБВ.

Импульсные сигналы

Электрическим импульсом называют напряжение или ток, отличающийся от нуля и имеющий постоянное значение лишь в течение короткого промежутка времени, меньшего или сравнимого с длительностью установления процессов в электрической системе, в которой действует этот ток или напряжение. В случае следующих друг за другом импульсов обычно предполагается, что интервал между ними существенно превышает длительность процессов установления.

В противном случае этот сигнал называют переменным напряжением или током сложной формы. С чисто математической точки зрения переходные процессы протекают, как известно, бесконечно долго, поэтому данное определение не совсем строго. Однако в реальных цепях длительность этих процессов не превышает 3τ, где τ – постоянная времени цепи, поэтому такое определение вполне допустимо.

Все многообразие электрических импульсов можно разделить на видеоимпульсы (рис. 1.2, а) и радиоимпульсы (рис. 1.2, б).

Связь между этими двумя типами импульсов состоит в том, что огибающая радиоимпульса представляет собой видеоимпульс. Частота синусоидального сигнала, которым заполнен видеоимпульс, называется частотой заполнения. Системы автоматики и управления оперируют в основном с видеоимпульсами, которые в дальнейшем будем называть просто импульсами.

Рис.1.2. Видео- и радиоимпульсы

На рис.1.3 приведен пример реального импульса.

Основными характеристиками и параметрами импульсов являются:

1.Амплитуда импульса Um = А;

2.Активная длительность импульса (измеряется на уровне 0,1А) tИ;

3.Крутизна фронта sФ = dU/dt ≈ Um/tФ;

4.Крутизна спада sСП = dU/dt ≈ Um/tСП;

Рис. 1.3. Реальный прямоугольный импульс

5.Искажение вершины импульса ΔU;

6.Амплитуда обратного выброса Um ОБР;

7.Длительность обратного выброса tИ ОБР;

8.Мощность импульса P = W/tИ, где W – энергия импульса.

Периодически повторяющиеся импульсы образуют импульсную последовательность (рис.1.4). Она характеризуется следующими параметрами:

1.Частота импульсной последовательности ƒ = 1/Т, где T = tИ + tП;

2.Коэффициент заполнения γ = tИ (диапазон изменения 0…1) и скважность Q = Т/tИ (диапазон изменения от до 1);

3.Среднее значение импульса (рис.1.5)

; (1.4)

Рис. 1.4. Импульсная последовательность

Рис. 1.5. Определение среднего значения импульса

Импульсы имеют различную форму: прямоугольные, треугольные, трапецеидальные, экспоненциальные и др. (рис.1.6), так же могут быть однополярными (а) и разнополярными (б) (рис.1.7). Однополярные импульсы могут быть положительными и отрицательными. Для получения импульсных последовательностей различной формы, частоты и амплитуды применяют специальные генераторы.

Читайте также:  Действия с работой мощностью 7 класс

Рис. 1.6. Треугольные (а), трапецеидальные (б), экспоненциальные (в) импульсы

Рис. 1.7. Однополярные положительные (а) и разнополярные (б) прямоугольные импульсы

При анализе работы систем автоматического управления и их отдельных элементов в качестве типовых возмущений используют одно из следующих.

Ступенчатое возмущение — мгновенное изменение воздействия на постоянную величину, чаще всего равную единице измерения (рис. 1.8, а). Физически система испытывает толчок. Аналитически

(1.5)

Единичный скачок в момент t1 пo отношению к моменту t аналитически записывается в виде 1( t1 – t).

Рис.1.8. Типовые возмущения

2. Импульсное возмущение – это возмущение, полученное как последовательность двух одинаковых по величине, но противоположных по знаку ступенчатых возмущений, сдвинутых во времени. Особое значение имеет единичная импульсная или дельта-функция. Она обозначается .

Дельта-функция обладает следующими свойствами:

Свойство (1.6) означает, что, несмотря на то, что функция имеет пренебрежимо малую длительность, площадь, ограниченная ей, имеет конечное значение, равное 1.

Свойство (1.7) означает, что импульсная функция , полученная как произведение произвольной функции на дельта-функцию, существует лишь в момент t1 и площадь ее равна значению функции в точке t1. Единичная импульсная функция является производной от единичного скачка.

3. Периодическое возмущение. В ряде случаев периодическое возмущение является наиболее удобным для исследования. Так, для автоматических систем, работающих в режиме незатухающих колебаний, целесообразно проводить проверку их свойств под действием периодических возмущений.

Стандартным считается периодическое возмущение единичной амплитуды x(t)=sin ωt.

Аналоговые и дискретные сигналы имеют некоторые общие характеристики, с помощью которых они описываются. К таким характеристикам относятся: динамический диапазон, время установления и ширина спектра сигнала.

Динамический диапазон характеризуется отношением наибольшей мгновенной (пиковой) мощности к наименьшей (пороговой) мощности. Динамический диапазон является чисто физической характеристикой сигнала и не отражает смысла передаваемой с помощью этого сигнала информации. Однако его выбор определяется максимально допустимыми искажениями, которым может подвергаться сигнал в процессе формирования, передачи, обработки и приема без потери заключенной в нем информации. Наименьшая (пороговая) мощность сигнала определяется уровнем шумов и помех, которые неизбежно присутствуют в виде колебаний и скачков питающего напряжения, тепловых шумов, наводок от излучения, электромагнитных полей и т. д. При этом сигнал должен быть таким, чтобы он четко различался на уровне помех. Увеличение сигнала приводит к росту отношения сигнал-помеха, однако максимальное (пиковое) значение сигнала ограничивается как ростом затрачиваемой мощности, так и предельными характеристиками элементов и устройств, через которые происходит передача сигналов. Насыщение этих элементов приводит к искажению передаваемых сигналов, а значит и заключенной в них информации.

Время установления является динамической характеристикой сигнала и определяется временем, за которое сигнал достигнет своего установившегося значения. Этот параметр непосредственно связан с временными характеристиками устройств, формирующих сигнал, и определяется их инерционностью. Время установления можно характеризовать либо функцией времени (временной характеристикой), описывающей реальный процесс, либо функцией частоты (спектром, или рядом гармонических колебаний). При этом оба представления равносильны и взаимно дополняют друг друга, а переход от одного к другому осуществляется с помощью прямого и обратного преобразования Фурье или Лапласа.

Выбор того или иного способа описания (временного или частотного) определяется исключительно назначением устройства. При этом меняется лишь точка зрения на предмет, но не сам предмет, который представляет собой объективную реальность, независимую от способа ее описания.

Кроме рассмотренных общих характеристик, различные виды сигналов характеризуются рядом дополнительных, детализирующих их параметров. У постоянного напряжения – это амплитуда, у переменного напряжения – амплитуда, частота, фаза, среднее и действующее значения. Импульсные сигналы более сложны по форме, поэтому опишем их более детально.

Источник

Измерение амплитуды сигналов

Оказывается, амплитуду синусоидального сигнала, а также любого другого сигнала, можно оценивать не только как абсолютное максимальное его значение. Иногда пользуются понятием двойная амплитуда (амплитуда от пика до пика сигнала), которая, как нетрудно догадаться, равна удвоенной амплитуде. Иногда употребляют понятие эффективное значение, которое определяется следующим образом: U эфф = (1/√2)А = 0,101А или 2А /Uэфф = 2√2 (это соотношение справедливо только для синусоидальных сигналов: для других видов сигналов отношение двойной амплитуды к эффективному значению будет другим). Пусть вас не удивляет, что сигнал часто характеризуется эффективным значением; дело в том, что именно эффективное значение используется для определения мощности. В США напряжение в сети имеет эффективное значение 117 В и частоту 60 Гц. Амплитуда этого напряжения равна 165 В (двойная амплитуда составляет 330 В).

Изменение амплитуды в децибелах. Как сравнить амплитуды двух сигналов? Можно, например, сказать, что сигнал X в два раза больше, чем сигнал Y . Во многих случаях именно так и производят сравнение. Но очень часто подобные отношения достигают миллионов, и тогда удобнее пользоваться логарифмической зависимостью и измерять отношение в децибелах (децибел составляет одну десятую часть бела, но единицей «бел» никогда не пользуются). По определению отношение двух сигналов, выраженное в децибелах, это дБ = 20·lg(A2 /A1 ), где А 1 и А 2 – амплитуды двух сигналов.

Например, если один сигнал имеет амплитуду вдвое большую, чем другой, то отношение первого сигнала ко второму составляет +6 дБ, так как lg2 = 0,3010. Если один сигнал в 10 раз больше другого, то отношение первого ко второму составляет +20 дБ, а если один сигнал в 10 раз меньше другого ‑ то ‑20 дБ. Отношение мощностей двух сигналов определяется так:

Читайте также:  Мощность механическая мощности электрической

дБ = 10·lg(P2 /P1 ),

где Р 1 и Р2 – мощности двух сигналов.

Если оба сигнала имеют одну и ту же форму, т. е. представлены синусоидами, то оба способа определения отношения сигналов (через амплитуду и мощность) дают одинаковый результат. Для сравнения сигналов разной формы, например, синусоидального и шумового следует использовать мощность (или эффективные значения).

Хотя децибел служит для определения отношения двух сигналов, иногда эту единицу используют для измерения абсолютного, а не относительного значения амплитуды. Дело в том, что можно взять некоторую эталонную амплитуду и определять любую другую амплитуду в децибелах по отношению к эталонной.

Известно несколько стандартных значений амплитуды, используемых для такого сравнения (эти значения не указываются, но подразумеваются); приведем некоторые из них: а) дБВ – эффективное значение 1 В; б) дБВт – напряжение, соответствующее мощности 1 мВт на некоторой предполагаемой нагрузке, для радиочастот это обычно 50 Ом, для звуковых частот – 600 Ом (напряжение 0 дБВт на этих нагрузках имеет эффективное значение 0,22 В и 0,78 В); в) дБп – небольшой шумовой сигнал, генерируемый резистором при комнатной температуре (об этом более подробно пойдет речь в разд. 7.11 ).

Помимо перечисленных существуют эталонные сигналы для измерений в других областях. Например, в акустике уровень звукового давления 0 дБ соответствует сигналу, среднее квадратурное давление которого составляет 0,0002 мкбар (1 бар равен 10 6 дин на квадратный сантиметр или приблизительно 1 атмосфере); в связи уровни определяются в дБС (относительный шум в полосе частот с весовой функцией С ). Обращаем ваше внимание на эталонную амплитуду 0 дБ: пользуясь этим значением, не забывайте его оговорить, например «амплитуда 27 дБ относительно эффективного значения 1 В», или в сокращенной форме «27 дБ относительно 1 Вэфф», или пользуйтесь условным обозначением дБВ.

Упражнение 1.11. Отношение двух сигналов составляет: а) 3 дБ, б) 6 дБ, в) 10 дБ, г) 20 дБ. Для каждого случая определите отношение напряжений и мощностей сигналов.

Другие типы сигналов

Линейно‑меняющийся сигнал. Линейно‑меняющийся сигнал (показан на рис. 1.18) – это напряжение, возрастающее (или убывающее) с постоянной скоростью. Это напряжение, конечно, не может расти бесконечно. Поэтому обычно такое напряжение имеет вид, показанный на графике рис. 1.19, ‑ напряжение нарастает до конечного значения, или на графике рис. 1.20 – пилообразное напряжение.

Рис. 1.18. Напряжение в виде линейно‑меняющегося сигнала.

Рис. 1.19. Ограниченный линейно‑меняющийся сигнал.

Рис. 1.20. Пилообразный сигнал.

Треугольный сигнал. Треугольный сигнал приходится «ближайшим родственником» линейно‑меняющемуся сигналу; отличие состоит в том, что график треугольного сигнала является симметричным (рис. 1.21).

Рис. 1.21. Треугольный сигнал.

Сигналы шумов. Сигналы, о которых пойдет речь, очень часто смешивают с шумами, имея в виду только тепловые случайные шумы. Шумовые напряжения характеризуются частотным спектром (произведение мощности на частоту в герцах) и распределением амплитуд. Одним из наиболее распространенных типов шумовых сигналов является белый шум с гауссовым распределением в ограниченном спектре частот . Для такого сигнала произведение мощности на частоту в герцах сохраняется постоянным в некотором диапазоне частот, а вариации амплитуды для большого числа измерений мгновенного значения описываются распределением Гаусса. Шумовой сигнал такого типа генерирует резистор (шум Джонсона), и он создает неприятности при всевозможных измерениях, в которых требуется высокая чувствительность. На экране осциллографа мы видим шумовой сигнал таким, как он показан на рис. 1.22.

Рис. 1.22. Шумовой сигнал.

Более подробно шумовые сигналы и способы борьбы с шумовыми помехами будут рассмотрены в гл. 7 . В разд. 9.32‑9.35 рассматриваются вопросы генерации шумовых сигналов.

Прямоугольные сигналы. График изменения прямоугольного сигнала во времени показан на рис. 1.23. Как и синусоидальный, прямоугольный сигнал характеризуется амплитудой и частотой. Если на вход линейной схемы подать прямоугольный сигнал, то сигнал на выходе вряд ли будет иметь прямоугольную форму. Для прямоугольного сигнала эффективное значение равно просто амплитуде.

Форма реального прямоугольного сигнала отличается от идеального прямоугольника; обычно в электронной схеме время нарастания сигнала tн составляет от нескольких наносекунд до нескольких микросекунд. На рис. 1.24 показано, как обычно выглядит скачок прямоугольного сигнала. Время нарастания определяется как время, в течение которого сигнал нарастает от 10 до 90 % своей максимальной амплитуды.

Рис. 1.23. Прямоугольные сигналы.

Рис. 1.24. Время нарастания скачка прямоугольного сигнала.

Импульсы. Импульсы – это сигналы, показанные на рис. 1.25. Они характеризуются амплитудой и длительностью импульса. Если генерировать периодическую последовательность импульсов, то можно говорить о частоте, или скорости повторения импульса, и о «рабочем цикле», равном отношению длительности импульса к периоду повторения (рабочий цикл лежит в пределах от 0 до 100 %).

Импульсы могут иметь положительную или отрицательную полярность (пьедестал), кроме того, они могут быть нарастающими или спадающими. Например, второй импульс, показанный на рис. 1.25, является убывающим импульсом положительной полярности (или спадающим импульсом с положительным пьедесталом).

Рис. 1.25. Нарастающие и убывающие импульсы обоих полярностей.

Сигналы в виде скачков и пиков. Сигналы в виде скачков и пиков упоминаются часто, но широкого применения не находят. К их помощи прибегают для описания работы схем. Если попытаться их нарисовать, то они будут выглядеть так, как показано на рис. 1.26. Скачок представляет собой часть прямоугольного сигнала, а пик – это два скачка, следующие с очень коротким интервалом.

Читайте также:  Удельная мощность для ламп накаливания

Рис. 1.26.

Логические уровни

Импульсы и прямоугольные сигналы широко используются в цифровой электронике. В цифровой схеме состояние любой точки в любой момент времени определяют заранее известные уровни напряжения. Эти уровни называют просто «ВЫСОКИЙ» и «НИЗКИЙ». Они соответствуют значениям «ложь» (0) и «истина» (1) булевой алгебры логики, которая имеет дело с переменными, принимающими эти значения.

В цифровой электронике точные значения напряжений не играют роли. Задача состоит в том, чтобы различать только уровни напряжения. В связи с этим для каждого семейства цифровых логических элементов определены допустимые значения высокого и низкого уровня напряжения. Например, логическое семейство цифровых элементов «74НС» работает от напряжения +5 В, при этом выходные уровни составляют 0 В (низкий уровень) и 5 В (высокий уровень), а порог срабатывания на входе равен 2,5 В. Реальные значения выходного напряжения могут составлять 1 В относительно «земли» или +5 В, но без учета ложного срабатывания. О логических уровнях речь пойдет дальше, в гл. 8–9 .

Источники сигналов

Нередко источник сигнала входит как неотъемлемая часть в саму схему. Но для испытательного режима работы очень удобен отдельный независимый источник сигнала. В качестве такого источника могут выступать три типа приборов: генераторы (синусоидальных) сигналов, генераторы импульсов и генераторы функций (сигналов специальной формы).

Генераторы (синусоидальных) сигналов. Генераторами сигналов называют генераторы синусоидальных колебаний, которые обычно обеспечивают широкий диапазон частот (как правило, от 50 кГц до 50 МГц) и приспособлены для «тонкой» регулировки амплитуды (для этой цели используется схема резистивного делителя, называемого аттенюатором). В некоторых генераторах предусмотрена возможность модуляции выходного сигнала (см. гл. 13 ). Одной из разновидностей генератора сигнала является свип‑генератор (генератор качающейся частоты) – он может периодически производить развертку выходной частоты в некотором диапазоне частот. Это качество прибора очень полезно при испытаниях схем, свойства которых определенным образом зависят от частоты (например, резонансные схемы или фильтры). В наши дни эти и многие другие приборы выпускаются в исполнении, позволяющем задавать (программировать) частоту, амплитуду и другие параметры с помощью вычислительной машины или другого цифрового устройства.

Еще одной разновидностью генераторов сигналов является синтезатор частот – устройство, которое позволяет производить точную установку частоты генерируемых синусоидальных колебаний. Частота задается цифровым способом, часто с точностью до восьми или более знаков после запятой, и синтезируется с помощью точного эталона кварцевого генератора цифровыми методами, о которых речь пойдет позже (в разд. 9.27‑9.31 ). Если перед вами когда‑нибудь будет стоять задача получения сигнала с абсолютно достоверным, точным значением частоты, то без синтезатора ее не решить.

Генераторы импульсов. Генераторы импульсов всего лишь формируют импульсы, но как совершенно они выполняют свою задачу. В них предусмотрена возможность регулировки ширины (длительности) импульса, частоты повторения, амплитуды, времени нарастания и других параметров. Кроме того, многие генераторы позволяют генерировать пары импульсов с заданными интервалами и частотой повторения и даже кодовые последовательности импульсов. В большинстве современных генераторов импульсов предусмотрены логические выходы, обеспечивающие легкое сопряжение с цифровыми схемами. Как и в генераторах синусоидальных сигналов, в генераторах импульсов часто предусмотрено внешнее программирование.

Генераторы функций (специальных сигналов). Во многих отношениях генераторы функций являются наиболее гибкими из всех источников сигналов. Они позволяют формировать синусоидальные, треугольные, прямоугольные сигналы в очень широком диапазоне частот (от 0,01 Гц до 10 МГц), при этом предусмотрена возможность регулировки амплитуды и смещения по постоянному току (постоянное напряжение, добавляемое к сигналу). Многие генераторы функций могут производить развертку частоты, причем в нескольких режимах (линейное или логарифмическое изменение частоты во времени). Промышленность выпускает генераторы функций с импульсным выходом (правда, они не обладают гибкостью генераторов импульсов) и возможностью модуляции выходного сигнала.

Промышленность выпускает также программируемые и цифровые генераторы функций. В цифровых генераторах значение частоты (а иногда и амплитуды) считывается в цифровом виде. В последние годы семейство генераторов функции пополнилось синтезирующим генератором функции (генератором‑синтезатором функций) – устройством, которое сочетает в себе гибкость генератора функций со стабильностью и точностью синтезатора частот. Примером служит генератор типа HP 8116А, который формирует синусоидальные, прямоугольные и треугольные сигналы (а также импульсы, линейно‑меняющиеся сигналы, сигналы, изменяющиеся как функция hav х и т. д.), в диапазоне частот от 0,001 Гц до 50 МГц.

Частота и амплитуда (от 10 мВ до 16 В от пика до пика) задаются программно, с помощью программы определяется также линейное или логарифмическое изменение частоты во времени. Помимо всего прочего устройство может работать как триггер, логическая схема, формировать всплески, производить амплитудную, частотную, импульсную модуляцию, формировать частоту, управляемую напряжением, и одиночные циклы. И последнее: если вам хотелось бы иметь один источник сигналов на все случаи жизни, то для этой цели лучше подойдет генератор функций.

Источник