Меню

Активная мощность р несинусоидального тока находится по формуле



Мощность при несинусоидальных источниках

Под активной мощностью Р несинусоидального тока понимают среднее значение мгновенной мощности за период первой гармоники:

Если представить напряжение и ток рядами Фурье

подставить эти ряды под знак интеграла и проинтегрировать, то можно получить:

где — угол между и ;

Таким образом, активная мощность синусоидального тока равна сумме активных мощностей отдельных гармоник.

Полная мощность S равна произведению действующего значения несинусоидального напряжения на действующее значение несинусоидального тока:

В цепях несинусоидальных токов в отличие от синусоидальных цепей

так как в них действует мощность искажения

Отношение активной мощности к полной называется коэффициентом мощности.

Для синусоидальных цепей , но в несинусоидальных цепях появляется коэффициент искажения.

где — коэффициент искажения.

ПРИМЕР

Вычислить если напряжение и ток состоят из двух гармоник: 1-й и 3-й. известны действующие значения гармоник напряжения и тока , а также угля сдвига фаз между гармониками напряжения и тока .

В этом случае мощности будут равны:

Очевидно, что только при условиях и . Оба эти условия выполняются только при чисто активном сопротивлении приёмника, то есть при одинаковых формах кривых тока и напряжения.

6.4 Высшие гармоники в трёхфазных цепях

Э.Д.С. каждой фазы трёхфазного трансформатора или трёхфазного генератора часто оказываются несинусоидальными. Каждая Э.Д.С. повторяет по форме остальные со сдвигом на одну треть периода и может быть разложена на гармоники. Постоянная составляющая, обычно, отсутствует.

Пусть k-гармоника Э.Д.С. фазы А:

Так для Э.Д.С. фазы В отстаёт от фаз А на , то k-гармоники Э.Д.С. фазы В и С соответственно:

Если k = 1,4,7,10, то k-гармоника Э.Д.С. фазы В опережает k-гармонику Э.Д.С. фазы А на 120 0 . Следовательно, 1-,4-,7,10-я гармоники образуют систему прямой последовательности фаз.

Если k = 2,5,8,11, то k-гармоника Э.Д.С. фазы В опережает k-гармонику Э.Д.С. фазы А на 120 0 . Следовательно, 2-,5-,8-11- и так далее гармоники образуют системы обратной последовательности.

Гармоники кратные трём (k = 3,6,9) образуют систему нулевой последовательности, то есть третьи гармоники Э.Д.С. всех трёх фаз совпадают по фазе ( ):

Шестые гармоники также совпадают по фазе и так далее.

Читайте также:  Объем сообщения равен 11 килобайт сообщение содержит 11264 символа какова мощность алфавита

На рис. 6.6 Э.Д.С. представляют собой три фазные Э.Д.С. трёхфазного генератора. Они имеют прямоугольную форму и сдвинуты относительно друг друга на одну треть периода основной частоты. На том же рисунке показаны первая и третья гармоники каждой Э.Д.С.. Из рисунка видно, что третьи гармоники Э.Д.С., действительно, находятся в фазе.


Рассмотрим особенности работы трёхфазных систем, вызываемые гармониками, кратным трём:

1.
При соединении обмоток трёхфазного генератора (трёхфазного трансформатора) треугольником (рис. 6.7) по ним протекают токи гармоник, кратные трём, даже при отсутствии внешней нагрузки.

Алгебраическая сумма третьих гармоник Э.Д.С. равна . Обозначим сопротивление обмотки каждой фазы для третьей гармоники , тогда ток третьей гармоники в треугольнике . Аналогично ток шестой гармоники , где — действующее значение шестой гармоники фазовой Э.Д.С.; — сопротивление фазы для шестой гармоники.

Действующее значение тока, протекающего по замкнутому треугольнику в схеме на рис. 6.7, определяется выражением

2. В линейном напряжении независимо от того, звездой или треугольником соединены обмотки генератора (трансформатора), гармоники, кратные трём, отсутствуют, если нагрузка равномерная.

Рассмотрим сначала схему соединения трёхфазного источника Э.Д.С. треугольником 6.7 при отсутствии внешней нагрузки. Обозначив потенциал точки А, — потенциал точки В по третьей гармонике, получим . Но , следовательно, . При наличии равномерной нагрузки, соединённой треугольником, каждая фаза генератора (трансформатора) и параллельно ей присоединённая нагрузка могут быть заменены эквивалентной ветвью, с некоторой Э.Д.С. и сопротивлением . На полученную схему можно распространить вывод, сделанный для случая отсутствия внешней нагрузки.


При соединении звездой трёхфазного источника Э.Д.С. (рис. 6.8) линейное напряжение третьей гармоники равно разности соответствующих фазовых напряжений. Так как третьи гармоники в фазовых напряжениях совпадают по фазе, то при составлении этой разности они вычитаются.

В фазовом напряжении могут присутствовать все гармоники (постоянная составляющая обычно отсутствует). Следовательно, действующее значение фазового напряжения:

В линейном напряжении схемы (рис. 6.8) отсутствуют гармоники кратные трём, поэтому

Отношение , если есть гармоники кратные трём.

3. При соединении генератора и равномерной нагрузки звездой и отсутствии нулевого провода токи третьих и других гармоник нулевой последовательности не могут протекать по линейным проводам. Поэтому между нулевыми точками приёмника и (рис. 6.9) при действуют напряжение:

Читайте также:  Индукционная плита 4 конфорки мощность квт

Действующее значение, которого


. (6.47)

4. Если в схеме звезда — звезда при равномерной нагрузке фаз сопротивление нагрузки для третьей гармоники обозначить , а сопротивление нулевого провода для третьей гармоники — (рис. 6.9), то по нулевому проводу будет протекать ток третьей гармоники

Аналогично находят токи других гармоник, кратных трём.

ГЛАВА 7 ЧЕТЫРЁХПОЛЮСНИКИ

7.1 Определение четырёхполюсника. Основные формы записи уравнений четырёхполюсника

В ряде случаев необходимо рассматривать электрические цепи с двумя входными и двумя выходными зажимами, в которых ток и напряжение на входе связаны линейными зависимостями с напряжением и током на выходе.

Такие цепи называются четырёхполюсниками. Они могут иметь сколь угодно сложную структуру, так как в процессе исследования цепи важно определить не токи и напряжения в отдельных ветвях, а только зависимости между входными и выходными напряжениями и токами.

Иногда четырёхполюсниками называют электрические аппараты и устройства, имеющие пару входных и пару выходных зажимов. К ним, например, относятся однофазные трансформаторы, участки линии электропередачи, мостовые диодные выпрямители, сглаживающие фильтры и прочее.


Условное изображение четырехполюсника показано на рис. 7.1.

Одну пару выводов называют входными (обозначаются ), другую — выходными (обозначаются ).

Если четырёхполюсник не содержит источников электрической энергии, то он называется пассивным, а если содержит – активным.

Примером активного четырёхполюсника может служить электронный усилитель.

На схеме активный четырёхполюсник изображается в виде прямоугольника с буквой А. Пассивный четырёхполюсник обозначается буквой П, либо вообще не обозначается.

Если у четырёхполюсника рабочими являются обе пары зажимов, то он называется проходным.

Четырёхполюсник, по сути, является передаточным звеном между источником питания и нагрузкой. К входным зажимам , как правило, подключают источник питания, к выходным зажимам — нагрузку.

Зависимости между двумя напряжениями и двумя токами на входных и выходных выводах можно записать в различной форме.

Если считать две из указанных величин заданными, то две другие величины будут связаны с ними системой двух уравнений, которые называются уравнениями четырёхполюсника.

Читайте также:  Какую мощность должен потреблять колебательный контур

Возможны следующие шесть форм записи уравнений пассивного четырёхполюсника:

Форма А(основная):

где A,D – безразмерные коэффициенты;

Коэффициенты четырёхполюсника для этой формы записи связаны следующим соотношением:

Источник

№49 Мощность в цепи несинусоидального тока.

Под активной мощностью P понимают количество энергии, потребляе¬мое (генери¬руемое) объектом за единицу времени. Математически активную мощность определяют как среднее значение мгновенной мощности за полный период.

Пусть некоторый элемент цепи потребляет ток i(t) при несинусоидальном напряжении u(t):

Мгновенная мощность p(t)=u(t)*i(t), тогда активная мощность будет равна:

Таким образом, активная мощность несинусоидального тока равна сумме активных мощностей отдельных гармоник:

Реактивная мощность Q несинусоидального тока определяется по аналогии с активной мощностью P как алгебраическая сумма реактивных мощностей отдельных гармоник:

Как известно, реактивная мощность Q синусоидального тока характеризует интенсивность колебаний энергии (Q=ωWmax) с частотой ω между элек¬ромагнитным полем элемента и остальной цепью. В цепи несинусоидального тока колебания энергии происходят на разных частотах. Сложение реактивных мощностей отдельных гармоник, характеризующих колебания энергии на разных частотах, лишено физического смысла. Математически может получиться, что реактивные мощности отдельных гармоник имеют разные знаки и в сумме дают нуль, хотя колебания энергии при этом имеют место. Таким образом, для цепи несинусоидального тока понятие реактивной мощности лишено физического смысла.

Для цепи несинусоидального тока применяется также и понятие полной мощности, которая определяется как произведение действующих значений напряжения и тока:

Как известно, для цепи синусоидального тока мощности P, Q, S образуют прямоугольный треугольник, из которого следует соотношение: S2=P2+Q2. Для цепей несинусоидального тока это соотношение между мощностями выполняется только для резистивных элементов, в которых в соответствии с законом Ома (u=iR) формы кривых функций u(t) и i(t) идентичны. Если в цепи содержатся реактивные элементы L и С, то это соотношение не выполняется: S2≥P2+Q2. Для баланса этого уравнения в его правую часть вносят добавление: S2≥P2+Q2+T2, откуда

где Т — мощность искажения – понятие математическое, характеризует степень различия в формах кривых напряжение u(t) и тока i(t).

Источник